师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆小学数学教材同步人教版六年级下册5 数学广角——鸽巢问题下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

六年级下册《 5 数学广角——鸽巢问题》精品教案优质课下载

  首先,用具体的操作,将抽象变为直观。“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。怎样让学生理解这句话呢?我首先让学生作为一名参与者,参与到游戏一“抢凳子”游戏中去,一在具体活动中理解“总有”和“至少”;游戏二“扑克牌”游戏在活动中渗透“总有”和“至少”两个关键词,并对它们有一个准确的认识和理解,通过活动,有效的激起学生的探索兴趣。

  其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索、发现。所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。

  再者,适当把握教学要求。我们的教学不同奥数,因此在教学中不需要求学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。

  教材分析

  《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。这类问题依据的理论,我们称之为“鸽巢问题”。

  通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。二是假设法,用平均分的方法直接考虑“至少”的情况。通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。

  第二个例题是在例1的基础上说明:只要物体数比鸽巢数多,总有一个鸽巢里至少放进(商+1)个物体。因此我认为例2的目的是使学生进一步理解“尽量平均分”,并能用有余数的除法算式表示思维的过程。

  学情分析

  可能有一部分学生已经了解了鸽巢问题,他们在具体分得过程中,都在运用平均分的方法,也能就一个具体的问题得出结论。但是这些学生中大多数只“知其然,不知其所以然”,为什么平均分能保证“至少”的情况,他们并不理解。还有部分学生完全没有接触,所以他们可能会认为至少的情况就应该是“1”。

  教学目标

  1.通过猜测、验证、观察、分析等数学活动,经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢原理”解决简单的实际问题。渗透“建模”思想。

  2.经历从具体到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力。

  3.通过“鸽巢原理”的灵活应用,提高学生解决数学问题的能力和兴趣,感受到数学文化及数学的魅力。

  教学重点

  经历“鸽巢问题”的探究过程,初步了解“鸽巢原理”。

  教学难点

  理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。

  教具准备:相关课件 相关学具(若凳子和扑克牌)

  教学过程

  一、游戏激趣,初步体验。

游戏要求:

老师准备2把凳子,请3位同学上台来,听清要求,音乐“停止”时,每个同学都必须坐下。让老师猜。

(有人认为是偶然猜对答案)

游戏二、“猜牌”游戏,再次验证,猜对答案是有一定规律性的。

  [设计意图:联系学生的生活实际,激发学习兴趣,使学生积极投入到后面问题的研究中。]