1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教2011课标版《 5 数学广角——鸽巢问题》精品教案优质课下载
(一)教学引例。
(1)问题:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。一人放,一人记录有哪些放法?
(2)提问:谁来说一说结果?你是怎么放的?
预设:一个放3支,另一个不放;一个放2支,另一个放1支。
(3)提问:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?
(4)提问:这句话里“总有”是什么意思?
预设:一定有。
(5)提问:这句话里“至少有2支”是什么意思?
预设:最少有2支,不少于2支,包括2支及2支以上。
(二)教学例1
思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?
学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。
(1)操作发现规律:通过把4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1个笔筒里至少有2支铅笔。
(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。
(3)探究证明。
方法一:用“枚举法”证明。
(1)谁来展示一下你摆放的情况?
(2)还有不同的放法吗?
(3)我们看这几种不同的放法,每种放法里,放的铅笔最多的枝数分别是4、2、3(师重点画出),也就是至少有(2支),也就是说:不管怎么放,总有一个笔筒里至少有2支铅笔。)
方法二:用“分解数法”证明。
当我们手里没有4支铅笔和3个笔筒时,就没办法像上面这样动手操作,逐一枚举,那我们能否把4支铅笔看成是数字4,把3个笔筒里的铅笔的数量看成是要分解成的3个数?4和这三个数有什么关系?(意思就是:4可以分解成哪三个数的和?)请同学们分一分
同样可知,把4分解成3个数,与枚举法一样,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。也就是说:不管怎么放,总有一个笔筒里至少有2枝铅笔。
方法三:用“平均分法”证明。
(1)刚才我们通过枚举法和分解法,都得出了4种情况,得出了同样的结论:不管怎么放,怎么分,总有一个笔筒里至少有2支铅笔。当笔的支数很多的时候,以上两种方法操作起来方便吗?那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?想一想,可以小组内交流一下。
(2)哪一组同学愿意把你们组的想法说一说?(引导学生得出:我们发现如果每个笔筒里放1支铅笔,最多放3支,剩下的1支不管放进哪一个笔筒里,总有一个笔筒里至少有2支铅笔。