师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步沪教课标版七年级下册13.1 邻补角、对顶角下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

七年级下册《13.1邻补角、对顶角》公开课教案优质课下载

重点难点:

对顶角、邻补角的概念和“对顶角相等”是重点;正确区别互为邻补角与互为补角和运用“对顶角相等”说理是难点。

教学过程:

一、情景导入

〔投影1〕下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线。

EMBED PBrush

“米”字形中的线段都相交,“米”字形中间的线段都平行,等等。

相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用。我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备。

二、邻补角和对顶角

〔投影2〕下面是一把剪刀,你能联想到什么几何图形?

两条直线相交,如图。

上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即:

∠1和∠2、∠1和∠3、∠1和∠4、∠2和∠3、∠2和∠4、∠3和∠4。

量一量各个角的度数,你能将上面的六对角分类吗?

可分为两类:∠1和∠2、∠1和∠4、∠2和∠3、∠3和∠4为一类,它们的和是1800;∠1和∠3、∠2和∠4为二类,它们相等。

第一类角有什么共同的特征?

一条边公共,另一条边互为反向延长线。

具有这种关系的两个角,互为邻补角。

讨论:邻补角与补角有什么关系?

邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关。

第二类角有什么共同的特征?

有公共的顶点,两边互为反向延长线。

具有这种位置关系的角,互为对顶角。

思考:〔投影3〕下列图形中,∠1和∠2是对顶角的是〔 〕