1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《13.1邻补角、对顶角》教案优质课下载
4.掌握垂线的性质,并会利用所学知识进行简单的推理.
[教学重点与难点]
重点:邻补角与对顶角的概念.对顶角性质与应用.垂线的定义及性质.
难点:理解对顶角相等的性质的探索.垂线的画法.
[教学设计]
一.创设情境 激发好奇
观察剪刀剪布的过程,引入两条相交直线所成的角.
出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?
二.探索对顶角性质
1.画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?
EMBED Equation.3 有公共的顶点O,而且 EMBED Equation.3 的两边分别是 EMBED Equation.3 两边的反向延长线.
2.用量角器分别量一量各角的度数,发现各类角的度数有什么关系?得出结论:对顶的两个角相等.
3.根据观察和度量完成下表:
两条直线相交所形成的角分类位置关系数量关系 EMBED PBrush 提问:如果改变 EMBED Equation.3 的大小,会改变它与其它角的位置关系和数量关系吗?
4.概括形成对顶角概念和对顶角的性质.
三.初步应用
练习:
1、下列说法对不对?
对顶角相等,相等的两个角是对顶角.
2、利用对顶角相等的性质解释剪刀剪布过程中所看到的现象.
四.巩固运用
例题:如图,直线a,b相交, EMBED Equation.3 ,求∠2,∠3,∠4的度数.
[巩固练习]已知,如图, EMBED Equation.3 ,求: EMBED Equation.3 的度数.
引言:前面我们学习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题.
垂线的定义: