1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《应用反比例函数图像和性质解决数学问题》教案优质课下载
教学重难点
重点:反比例函数的图象性质与数形结合思想
难点:反比例函数增减性的理解,
教学过程
一:知识梳理
1.反比例函数:一般地,如果两个变量x、y之间的关系可以表示成 (k为常数,k≠0)的形式(或y=kx-1,k≠0),那么称y是x的反比例函数.
反比例函数的概念需注意以下几点:
(1)k为常数,k≠0;
(2)中分母x的指数为1;例如y= 就不是反比例函数;
(3)自变量x的取值范围是x≠0的一切实数;
(4)因变量y的取值范围是y≠0的一切实数.
3.反比例函数的图象和性质.
利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,反比例函数y=具有如下的性质(见下表)
①当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左到右下降,也就是在每个象限内,y随x的增加而减小;
②当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y随x的增加而增大.
4.画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数的图象要注意自变量的取值范围是x≠0,因此,不能把两个分支连接起来;(2)由于在反比例函数中,x和y的值都不能为0,所以,画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x轴和y轴的变化趋势.
5. 反比例函数y= (k≠0)中比例系数k的几何意义,即过双曲线y=(k≠0)上任意一点引x轴、y轴垂线,所得矩形面积为│k│。
6. 用待定系数法求反比例函数解析式时,可设解析式为
观察思考、提炼方法
(活动一)
问题.已知点A(-2,y1),B(-1,y2)都在反比例函数的图象上,则y1与y2的大小关系(从大到小)为 . 当 -4≤x≤-1时,y的最大值与最小值分别是 、 .
流程:学生小组合作交流后,说说分析过程.教师对学生的说理过程进行点评,并利用多媒体展示过程.
教师归纳函数值大小比较方法:
1、代入求值法;2、图象性质法;3、图象观察法;4、特殊值法.
(设计意图)从基本问题出发,从具体数字到字母,从已知自变量变化范围比较函数值大小,从已知函数值大小范围比较自变量大小,层层深入,不断变式,让学生在具体情境中掌握学会函数值大小比较,学会从特殊到一般的研究方法,体会借助图象,利用数形结合思想解题作用.