1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
青岛2011课标版《利用二次函数的性质确定函数最大值和最小值》教案优质课下载
教学重点和难点:
重点:利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题。
难点:将现实问题数学化,情景比较复杂。
教学过程:
一、相关知识链接:
1. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 .当x= 时,y的最 值是 .
2. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 .当x= 时,函数有最___值,是 .
3.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最
_____ 值,是 .
二、探求新知:
问题:用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l 的变化而变化.当l是多少时,场地的面积S最大?
分析:先写出S与l的函数关系式,再求出使S最大的l值
矩形场地的周长是60m,一边长为l,则另一边长为
m.场地的面积: (0 以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是函数图象的最高点,也就是说,当l 取顶点的横坐标时,这个函数有最大值. 三、对应练习: 某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大? 1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之 发生了变化? 先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品 的利润y也随之变化,我们先来确定y随x变化的函数式.涨 价x元,则每星期少卖 件,实际卖出 件, 每件利润为 元,因此,所得利润 为 元.