1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级上册《2.3等腰三角形的性质定理》集体备课教案优质课下载
〖教学重点与难点〗
◆教学重点:理解并掌握等腰三角形三线合一的性质.
◆教学难点:会利用等腰三角形的性质进行简单的推理、判断、计算和作图
〖教学过程〗
一.温故而知新
△ABC中,已知:AB=AC
(1)、若∠A=36°,则∠B= ;∠C= ;
(2)、若∠B=40°,则∠A= ;∠C= ;
(3)、若有一个角为120°,则另外两个角分别为 、 ;
(4) 、若有一个角为60°,则△ABC是 三角形;
(5) 、若有一个角为70°,则另外两个角分别 、
二.交流互动,探求新知
1.等腰三角形的性质2
如图2-5,在等腰三 角形ABC中,AB=AC,AD平分∠BAC,交BC于D,
(1)根据学过的全等三角形判定方法找出图中的全等 三角形,根据全等三角形的性质找出所有相等的线段和角
(2)你发现了等腰三角形的哪些性质?
结论:等腰三角形的顶角平分线、底边上的中线和高线互相重合.简称等腰三角形三线合一.
2.多媒体演示:教师借助媒体的动态效果,介绍在一个三角形中,等边对等角和三角形一边上中线、高线及角平分线的相对位置,帮助学生在理解的基础上,掌握等腰三角形的性质.
3.应用定理时的推理格式:
用几何语言表述为:
在△ABC中,如图,∵AB=AC ∴∠B=∠C(在一个三角形中等边对等角)
在△ABC中,如图
(1)∵AB=AC ,∠1=∠2
∴AD⊥BC, BD=DC (等腰三角形三线合一)
(2)∵AB=AC,BD=DC ∴AD⊥BC,∠ 1=∠2