1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级下册《4.1多边形》最新教案优质课下载
1.重点:四边形内角和定理。
2.难点:四边形的内角和的证明思路。三、学习者特征分析八年级学生对几何学习呈现两级分化的现象,本节内容单从知识上看比较枯燥,而且也比较简单,几个知识点是学生已经知道的。如果教师只是简单的讲授,学生会认为老师在炒冷饭,也体会不到学数学的乐趣。但同时本节课通过合理的教学设计,是提高学生学习几何兴趣的良好契机。四、教学策略选择与设计通过学生动手实验——几何画板测量——推理证明(多种政法)等多个角度来说明自己是如何得到四边形内角和为360度的,并且通过几何画板动态的图形扩展思路。也为求多边形内角和作好铺垫。这样能使学生在已知中寻找未知,在不同体验、同学合作、相互补充中得到发展和提高,教学目标的达成也就水到渠成了。五、教学环境及资源准备
1.教学环境:电子白板
2.资源准备:教学PPT、风筝、几何画板
六、教学过程教学过程教师活动学生活动设计意图及资源准备情境
引入
激趣
引探出示学生自己制作的三角形、四边形、五边形的风筝等多边形。同学们,这些风筝看起来是什么形状的呢?
观察风筝,说出形状。三角形、四边形、五边形、六边形、八边形……像三角形、四边形、五边形、六边形等多边形,学生在小学中已学过,而且这些几何图形在平时的学习中也比较多见。从学生已有的知识入手,以求达成温故而知新的效果。类比
学习
得出
定义
1.出示三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫三角形。引导学生在四边形定义时注意概念的内涵和外延
2.由三角形的有关概念的回顾,介绍四边形的有关概念1.类比得出四边形定义、n边形定义
2.类比得出四边形的顶点、边、角、对角线的有关概念。结合图形讲解,渗透数形结合的数学思想方法和类比的数学思想方法合作
学习
探究
性质
探索1:在一张纸上任意画一个四边形,剪下它的四个角,把它们拼在一起(四个角的顶点重合),你发现了什么?动手实践,说出自己的发现 通过动手操作,让学生形成一种思路,得到一种想法。探索2:教师用几何画板测量出四个内角的度数,教师测量一个角的度数,最后出示画板运算结果另外三个角的度数的测量由学生来完成,计算四个内角的和,出示画板运算结果。 让学生初步的掌握几何画板的角度的测量操作,引发学生的兴趣探索3:证明四边形的内角和为360°
小结:四边形的内角和为360°思考多种解法,从不同的思路研究四边形的内角和 理清思路,将四边形问题转化为三角形问题 小结证法: 思考多种证法,一题多解,开阔自己的解题思路实验——测量——证明的过程,让学生的思维更严密。在引导学生主动参与、亲身实践、独立思考、合作探究,培养了学生分析和解决问题的能力以及合作交流的能力。让学生体会一题多解的数学思想。鉴于课堂的时间有限,对于学生没有想出来的解法,可以进行适当的引导。
例题
解析
当堂
练习
例1.如图,四边形风筝的四个内角∠A,∠B ,∠C ,∠D的度数之比为1:1:0.6:1, 求它的四个内角的度数。