1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
沪科2011课标版《3.2一元一次方程的应用》教案优质课下载
教学重点:找出追及问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题。
教学难点:找等量关系
创设情境问题:
例1:小明每天早上要在7:50之前赶到距家1000米的学校上学。小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书。于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远?
分析:当爸爸追上小明时,两人所行距离相等。在解决这个问题时要抓住这个等量关系。(引导学生画出线路图)
80x5 80x
180x
相等关系:
爸爸走的路程=小明走5分钟的路程 + 小明走x分钟的路程= 小明走的总路程
爸爸所用的时间 = 小明所用总时间 – 5分钟
练习
甲、乙两人从相距为180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时.经过多少时间两人相遇?
分析 什么叫相向而行、同向而行?路程、时间与速度之间有怎样的数量关系? .A,B两地间路程是哪几段路程之和?
自行车所走的路程+摩托车所走的路程=180千米.方程能列出来吗?
变题一 相遇后经过多少时间乙到达A地?
变题二 如果甲先行1时后乙才出发,问甲再行多少时间与乙相遇?
例2 甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.出发后经3时两人相遇.已知在相遇时乙比甲多行了90千米,相遇后经1时乙到达A地.问甲、乙行驶的速度分别是多少?
变题 相遇后经过多少时间甲到达B地?
设甲的速度为 千米/时,题目中所涉及的有关数量及其关系可以用下表表示:
相遇前相遇后速度时间路程速度时间路程甲 33 3 +90乙 33 +90 13 相遇前甲行驶的路程+90=相遇前乙行驶的路程;
相遇后乙行驶的路程 = 相遇前甲行驶的路程.
解 设甲行驶的速度为 千米/时,则相遇前甲行驶的路程为3 千米,乙行驶的路程为(3 +90)千米,乙行驶的速度为 千米/时,