1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
七年级下册《提公因式法》精品教案优质课下载
【学习重点】 用提取公因式法进行因式分解。
【学习难点】正确理解因式分解的概念,准确找公因式。
教学准备:
教学过程教学过程二次备课一、情景导入
上一节我们已经学习了整式的乘法,知道可以将几个整式的乘积化为一个多项式的形式,反过来,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,本节课我们一起来探究这种变形:《因式分解》
二、学生自学
出示自学指导(投影),完成以下问题:
1、 回忆:运用前两节所学的知识填空:
(1)2(x+3)=___________________;
(2)x2(3+x)=_________________;
(3)m(a+b+c)=_______________________.
2、探索:你会做下面的填空吗?
(1)2x+6=( )( );
(2)3x2+x3=( )( );
(3)ma+mb+mc=( )2.
3.归纳:“回忆”的是已熟悉的 运算,而要“探索”的问题,其过程正好与“回忆” ,它是把一个多项式化为几个整式的乘积形式,这就是 因式分解 (也叫做把这个多项式 分解因式 )
4、下列各式从左到右的变形,哪是因式分解?
(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.
(5)36 (6)
5、①多项式 有 项,每项都含有 , 是这个多项式的公因式.
②3x2+x3有 项,每项都含有 , 是这个多项式的公因式.
③ma+mb+mc有 项,每项都含有 , 是这个多项式的公因式.
多项式各项都含有的 叫做这个多项式各项的公因式.
6、提公因式法分解因式:如果一个多项式的各项含有公因式,那么就可以 ,从而将多项式化成两个 的乘积的形式,这种分解因式的方法叫做提公因式法.如:ma+mb+mc=m(a+b+c)