1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
沪科2011课标版《分式的概念及其基本性质》新课标教案优质课下载
1、能根据分式的概念,辨别出分式,理解当分母为零时,分式无意义。
2、能确定分式中字母的取值范围,使分式有意义,或使分式的值为零。
3、会用分式表示实际问 题 中的数量关系,并会求分式的值,体验分式在实际中的价值。
【教学重点】
分式的有关概念
【教学难点】
理解并能确定分式何时有意义,何时无意义。
【教学过程】
(一)创设情景,引出课 题 。
情景:课本问题1,2
设计说明:通过创设情景,让学生感受到分式来源于实际,激发学生学习兴趣。
对得到的分式进行分类,让学生比较说出这些代数式与过去学过的整式有什么不同?(可能学生只讲出有分母,教师应适当的引导。)
设计说明:让学生自己感悟分式与整式的不同,培养学生归纳和表达能力。
(板书)分式:把这些分子、分母都是整式且分母中含有字母的代数式叫做分式。
(二)合作讨论,探求新知
做一做:
1、下列代数式中,哪些是整式?哪些是分式?
2、探究:分式 eq ﹨f (a,b) 的分母中的字母能取任何实数吗?为什么?
分式 eq ﹨f (2x-3,x+2) 中的字母x呢?
总结得出分式的意义:分式中字母的取值不能使分母为零,当分母的值为零时,分式就没有意义。
设计说明:通过与整式比较突出对分式概念的理解。通过讨论,加深学生对分式意义的认识。
(三)应用巩固,掌握新知
例1:对分式 eq ﹨f (2x+1,3x-5)