1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《对顶角及其性质》公开课教案优质课下载
重点:邻补角、对顶角的概念,对顶角性质与应用.
难点:理解对顶角相等的性质的探索.
教学过程
一、图片导入
学生欣赏图片,.
师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本节要研究相交线所成的角和它的特征,
二、认识邻补角和对顶角,探索对顶角性质
1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?
学生思考并在小组内交流,全班交流.
当学生直观地感知角有“相邻”、“对顶”关系时, 教师引导学生用几何语言准确地表达,如:
∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.
∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.
2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻”关系的两角互补,“对顶”关系的两角相等.
3.学生根据观察和度量完成下表:
两直线相交所形成的角分类位置关系数量关系 教师再提问:如果改变∠AOC的大小, 会改变它与其它角的位置关系和数量关系吗?
4.概括形成邻补角、对顶角概念.
(1)师生共同定义邻补角、对顶角.
有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.
如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.
(2)初步应用.
练习1.下列各图中∠1、∠2是对顶角吗?
练习2.下列各图中∠1、∠2是邻补角吗?
5.对顶角性质.
(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.
(2)教师把说理过程,规范地板书: