1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
沪科2011课标版《12.4综合与实践一次函数模型的应用》优质课教案下载
教学重点:建立一次函数的模型。
教学难点:建立一次函数的模型,解决实际问题。
教学过程:
引入:求一次函数解析式是我们本学期函数学习的主要内容,掌握建立一次
函数模型以及在实际问题中利用一次函数解决问题,才是我们学习的目的。现实生活或具体情境中的很多问题或现象都可以抽象成数学问题,并通过建立合适的数学模型来表示数量关系和变化规律,并求出结果和讨论结果的意义。下面,我们一起看看昨天大家写的学案。
二、学案初步学习讲解
2、小明根据某个一次函数关系式填写了下表:
其中有一格不慎被墨汁遮住了,想想看,该空格里原来填的数是多少?解释你的理由。
解:设这个一次函数的解析式为y=kx+b.
∵当x=0时,y=1,当x=1时,y=0.
EMBED Equation.3
所以当x=-1时,y=4。
3、为了提醒人们节约用水,及时修好漏水的水龙头,王强同学做了水龙头漏水实验,他用于接水的量筒最大容量为100毫升。他在做实验时,每隔10秒观察量筒中水的体积,记录的数据如表:(漏出的水量精确到1毫升)。
时间t(秒)10203****06070漏出的水量V(毫升)25811141720(1)如果王强同学继续试验,请探究多少秒后量筒中的水会满而溢出。
(2)按此漏水速度,一小时会漏水多少千克?(精确到0.1千克)
解:按下面步骤解决上述问题。
①在这个问题中有几个变量?自变量和因变量是什么?它们之间是函数关系吗?
解:有两个变量,自变量是时间t,因变量是漏出的水量V。它们之间是函数关系。
②根据实验得到的数据,把时间和漏水量的每一组对应值分别作为点的横坐标和纵坐标,在坐标系中描出这些点。
解:
③观察这些点的分布有什么特点?从而猜测出时间t和漏水量V之间是什么函数关系?
解:这些点的分布近似一条直线,我们可以推测漏水量V和时间t之间是一次函数关系。
根据已知数据用待定系数法求函数的表达式。
解:“设V与t的函数关系式为V=kt+b,
根据表中数据知:当t=10时,V=2;当t=20时,V=5,