1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级下册《17.1一元二次方程》最新教案优质课下载
一、情境导入
一个面积为120m2的矩形苗圃,它的长比宽多2m,苗圃的长和宽各是多少?
设苗圃的宽为xm,则长为(x+2)m.
根据题意,得x(x+2)=120.
所列方程是否为一元一次方程?
(这个方程便是即将学习的一元二次方程.)
二、合作探究
探究点一:一元二次方程的概念
【类型一】 一元二次方程的识别
① eq ﹨f(y2,4) -y=0;②2x2-x-3=0;③ eq ﹨f(1,x2) =3;
④x2=2+3x;⑤x3-x+4=0;⑥t2=2;
⑦x2+3x- eq ﹨f(3,x) =0;⑧ eq ﹨r(x2-x) =2.
解析:由一元二次方程的定义知③⑤⑦⑧不是.答案为①②④⑥.
方法总结:判断一个方程是不是一元二次方程,先看它是不是整式方程,若是,再对它进行整理,若能整理为ax2+bx+c=0(a,b,c为常数,a≠0)的形式,则这个方程就是一元二次方程.
变式训练:见《学练优》本课时练习“课堂达标训练”第1题
【类型二】 根据一元二次方程的概念求字母的值
(1)ax2-x=2x2-ax-3;
(2)(a-1)x|a|+1+2x-7=0.
解析:(1)将方程转化为一般形式,得(a-2)x2+(a-1)x+3=0,当a-2≠0,即a≠2时,原方程是一元二次方程;(2)由|a|+1=2,且a-1≠0知,当a=-1时,原方程是一元二次方程.
解:(1)将方程整理得(a-2)x2+(a-1)x+3=0,∵a-2≠0,∴a≠2.当a≠2时,原方程为一元二次方程;
(2)∵|a|+1=2,∴a=±1.当a=1时,a-1=0,不合题意,舍去.∴当a=-1时,原方程为一元二次方程.
方法总结:用一元二次方程的定义求字母的值的方法:根据未知数的最高次数等于2,列出关于某个字母的方程,再排除使二次项系数等于0的字母的值.