1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级下册《17.3一元二次方程的根的判别式》优质课教案下载
技能掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.
通过复习用配方法解一元二次方程的b2-4ac>0、b2-4ac=0、b2-4ac<0各一题,分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目.过程与
方法1.经历思考、探究过程、发展总结归纳能力,能有条理地、清晰地阐述自己的观点.
2.体会解决问题能力,发展实践能力与创新意识.情感态度与价值观1.积极参与数学活动,对其产生好奇心和求知欲.
2.形成合作交流、独立思考的学习习惯.重点b2-4ac>0 一元二次方程有两个不相等的实根;b2-4ac=0 一元二次方程有两个相等的实数;b2-4ac<0 一元二次方程没有实根.难点从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.
【教学环节安排】
环节教学问题设计教学活动设计问题最佳
解决方案创设情境(学生活动)用公式法解下列方程.
(1)2x2-3x=0 (2)3x2-2 x+1=0 (3)4x2+x+1=0
老师点评,(三位同学到黑板上作)老师只要点评(1)b2-4ac=9>0,有两个不相等的实根;(2)b2-4ac=12-12=0,有两个相等的实根;(3)b2-4ac=│-4×4×1│=<0,方程没有实根通过回忆,激发学生的学习兴趣。自主探究从前面的具体问题,我们已经知道b2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:
求根公式:x= ,当b2-4ac>0时,根据平方根的意义, 等于一个具体数,所以一元一次方程的x1= ≠x1= ,即有两个不相等的实根.当b2-4ac=0时,根据平方根的意义 =0,所以x1=x2= ,即有两个相等的实根;当b2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.
例1.不解方程,判定方程根的情况
(1)16x2+8x=-3 (2)9x2+6x+1=0
(3)2x2-9x+8=0 (4)x2-7x-18=0
分析:不解方程,判定根的情况,只需用b-4ac的值大于0、小于0、等于0的情况进行分析即可.
解:(1)化为16x2+8x+3=0
这里a=16,b=8,c=3,b2-4ac=64-4×16×3=-128<0
所以,方程没有实数根.
(2)a=9,b=6,c=1,
b2-4ac=36-36=0,
∴方程有两个相等的实数根.
(3)a=2,b=-9,c=8
b2-4ac=(-9)2-4×2×8=81-64=17>0
∴方程有两个不相等的实根.
(4)a=1,b=-7,c=-18