师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步沪科版八年级下册17.3 一元二次方程的根的判别式下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

八年级下册《17.3一元二次方程的根的判别式》新课标教案优质课下载

教学重点、难点

1.教学重点:会用一元二次方程判别式判定根的情况.

2.教学难点:正确理解“当b2-4ac<0时,方程ax2+bx+c=0(a≠0)无实数根.”

教学方法 讨论法、归纳法

课型 新授课

教学过程

一.情境导入:

(课件)(1)平方根的性质是什么?

(课件)(2)解下列方程:①x2-3x+2=0;②x2-2x+1=0;③x2+3=0.

问题(1)为本节课结论的得出起到了一个很好的铺垫作用.问题(2)通过自己亲身感受的根的情况,对本节课的结论的得出起到了一个推波助澜的作用.

二.探究新知:

(课件)任何一个一元二次方程ax2+bx+c=0(a≠0)用配方法将其变形为(x+ ) = ,∵4a >0,因此对于比开方数 来说,只需研究b -4ac为如下几种情况的方程的根.

(1)当b2-4ac>0时,方程有两个不相等的实数根.

(2)当b2-4ac=0时,方程有两个相等的实数根,即x1=x2=- .

(3)当b2-4ac<0时,方程没有实数根.

教师通过引导之后,提问:究竟谁决定了一元二次方程根的情况?

答:b2-4ac.

3.①定义:把b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用符号“△”表示.

②一元二次方程ax2+bx+c=0(a≠0).

当△>0时,有两个不相等的实数根;当△=0时,有两个相等的实数根;

当△<0时,没有实数根.反之亦然.

注意以下几个问题:

(1)∵a≠0,∴4a2>0这一重要条件在这里起了“承上启下”的作用,即对上式开平方,随后有下面三种情况.正确得出三种情况的结论,需对平方根的概念有一个深刻的、正确的理解,所以,在课前进行了铺垫.在这里应向学生渗透转化和分类的思想方法.

(2)当b2-4ac<0,说“方程ax2+bx+c=0(a≠0)没有实数根”比较好.有时,也说“方程无解”.这里的前提是“在实数范围内无解”,也就是“方程无实数根”的意思.

三.例题解析: