1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级下册《三角形的中位线定理》新课标教案优质课下载
⑶一个三角形有??条中位线,画出图4的三角形的所有中位线,观察、测量发现:
( )∥( ),( )= ( );( )∥( ),( )= ( );( )∥( ),( )= ( )。用语言叙述上述结论:三角形的中位线??并且?? .
⑷再画出图2的△ABC的三条中线,它与中位线有何区别?
说明:⑴以上内容让学生按印发的学习提纲在课前完成。⑵三角形中位线定义的引入、定理的结论课本是直接给出的,这不符合过程性原则.我们①以“应用性问题”导入,揭示了数学知识在生产、生活中的广泛应用,强化学习动机,变“要我学”为“我要学”;②让学生通过实验操作、观察比较、估计猜测,自己发现结论,这可培养学生对数学的内在兴趣,让学生认识到数学不是少数天才创造的,而是经过努力一般人都可以发现的,数学来源于现实世界,而又是解决实际问题的有力工具,符合从“感性到理性”的认识规律。
⒉创设思维情境,启导学生发现证明结论的思路和方法
⑴检查课前自学情况。教师提问有关问题,学生回答,并用多媒体展示答案。
⑵教师指出:同学们观察发现的这些结论是否正确,还需严格证明。教师板书,学生在提纲上写已知、求证。
⑶启导全班学生思考、讨论证法,教师巡视与学生一起研究,收集信息,了解情况。
①本题与以前学过的哪些知识、方法有关?是什么关系?学生进行联想,回答。△ADE与△ABC有何关系?若过D作平行于BC的直线,发现什么(用多媒体演示)?②怎样证一条线段等于另一条的一半?学生回答:截(把长的平分)与补(把短的加倍)。经过探讨,学生不难发现以下三种证法:(过程略)
证法㈠:利用相似三角形 证法㈡: 证法㈢:
说明:定理的证明,不拿现成的方法给学生,而是创设思维情境,启导学生“联想”到学过的有关知识和方法,使新旧知识得到顺利同化,并引导学生展开讨论,实现思维交锋,智力杂交,这大大激发了学生的求知兴趣,让他们体验到成功的喜悦,数学思维能力在这一过程中得到了有效的发展。
⒊释疑解惑,引导学生独立完成证明
⑴要求A组同学选做一种证法,B组同学任选两种证法,C组同学三种证法都做,尖子生能发现新的证法或问题;⑵两人板演;⑶教师巡视,注意帮助学困生,并收集有关信息。
说明:传统教学的证明过程都是由教师完成,这不符合了主体性原则。既然学生已经知道怎样解,就应让学生独立完成,加大学生的参与度,对提高学生的独立表达能力大有好处。
⒋精讲总结,理性归纳
⑴教师引导学生分析定理的特点:题设:两个“中点”;结论:“平行”,“一半”。
⑵再指出:凡是与“中点”、“平行”、“线段倍分”有关的问题可考虑使用此定理。
说明:帮助学生揭示定理的本质特征,为灵活运用定理作准备。
⒌精心设计练习,进行变式训练
⑴引导学生观察图8,问:可发现哪些新的结论?让学生抢答,注意简单的结论先让A组或B组同学回答,不明显的结论让C组同学补充,给各类学生提供表现才能的机会,并及时给予表扬与鼓励。结论有:3个平行四边形;4个小三角形全等;小三角形的周长为原三角形的一半,面积为原三角形的四分之一。这些结论很重要,若学生没全部找出,可稍加提示。
⑵这个问题能否进行推广?若把△ABC改为四边形ABCD,又发现什么结论(见图9)。让学生抢答,原则同上。结论有:EFGH为平行四边行;EG与FH互相平分;EFGH的面积为ABCD的一半等。