1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
沪科2011课标版《正方形》公开课教案优质课下载
[教学目标]
能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟领会转化的数学思想,培养学生探究问题的兴趣和合作交流的意识,感受数学的实用性,体验自己探究出问题的成就感.
[教学重点]
利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题.
[教学难点]
如何利用轴对称将最短路径问题转化为线段和最小问题.
三、学生学情诊断
八年级的学生直接经验少,理解能力差,抽象思维水平较低,处于直觉经验型思维向逻辑思维的过渡阶段,辩证思维还只是处在萌芽和初始的状态上.
最短路径问题从本质上说是最值问题,作为初中生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手.
解答:“当点A、B在直线 的同侧时,如何在 上找点C,使AC与CB的和最小”,需要将其转化为“直线 异侧的两点,与 上的点的线段和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解和操作方面的困难.
在证明“最短”时,需要在直线上任取一点,证明所连线段和大于或等于所求作的线段和.这种思路和方法,一些学生还想不到.
在解答“使处在直线两侧的两线段和最小”的问题,需要把它们平移拼接在一起,一些学生想不到.
教学时,教师可以让学生首先思考“直线 的异侧的两点,与 上的点的线段和最小”,给予学生启发,在证明“最短”时,点拨学生要另选一个量,通过与求证的那个量进行比较来证明,同时让学生体会“任意”的作用,因此确定本节课的教学难点为:
五、教学过程
(一)探索新知
1、建立模型
问题1 问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马问题”.
追问:你能用自己的语言说明这个问题的意思,并把它抽象为数学的问题吗?
师生活动:学生交流讨论,回答并相互补充,最后达成共识:
(1)行走的路线:从A地出发,到河边 饮马,然后到B地;
(2)路线全程最短转化为两条线段和最短;
(3)现在的问题是怎样找出使两条线段长度之和为最短的直线 上的点.设P为直线l上的一个动点,上面的问题转化为:当点P在 的什么位置时,AP与BP的和最小.
[设计意图]从数学史上久负盛名的“将军饮马问题”引入,增加学生们的数学底蕴,提高其人文思想.同时引导学生分析题意,画出图形.将实际问题转化为数学问题更有利于分析问题、解决问题.
解决问题