1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
沪科2011课标版《21.1二次函数》优质课教案下载
应用已有的知识,经过自主探索 和合作交流尝试解决问题.
【情感、态度与价值观】
在经历和体验数学知识发现的过程中,提高思维品质,在勇于创新的过程中树立学好数学的自信心.
重点难点
【重点】
二次函数在最优化问题中的应用.
【难点】
从现实问题中建立二次函数模型,学生较难理解和掌握.
教学过程
一、问题引入
在日常生活、 生产和科研中,常常会遇到求什么条件下可使面积最大、利润最大、材料最省、时间最少、效率最高等问题,这类问题称为最优化问题.其中一些问题可以归结为求二次函数的最大值或最小值.如何利用二次函数分析解决这样的问题呢?
本节课我们来研究二次函数在实际问题中的应用.
做一做:从地面竖直向上抛出一个小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是:h=30t-5t2(0≤t≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高 度是多少?
我们可以借助函数图象解决这个问题,画出函数h=30t-5t2(0≤t≤6)的图象,如图所示,可以看出这个函数的图象是一条抛物线的一部分.这条抛物线的顶点是这个函数图象的最高点,也就是说,当t取顶点的横坐标时,这个函数有最大值.
因此,当t=-=-=3时,h有最大值=45,也就是说,小球运动的时间是3s时,小球最高,小球运动中的最大高度是45 m.
一般地,当a>0(或a<0)时,抛物线y=ax2+bx+c的顶点是最低(或高)点,也就是说,当x=-时,二次函数y=ax2+bx+c有最小(或大)值.
二、新课教授
问题1.用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地面积S最大?
师生活动:
学生积极思考,找到等 量关系式,并尝试解答.
教师巡视、指导,最后给出解答过程.
解:矩形场地的周长是60 m ,一边长l,则另一边长为(-l),场地的面积S=l(30-l),即S=-l2+30l(0 因此,当l=-=-=15(m)时,S有最大值==225(m2). 即当l是15 m时,场地面积S最大,最大值是225 m2. 问题2.某商品现在的售价是每件60元,每星期可卖出300件,市场调查反映,如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?