1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《求几何面积问题》最新教案优质课下载
二:教学重难点
教学重点:利用二次函数y=a x2+bx+c(a≠0)的图象与性质,求面积最值问题
教学难点:1、正确构建数学模型
2、对函数图象顶点、端点与最值关系的理解与应用
三:新课讲授:
问题探究:
求下列函数y=2x2+8x+13的最大值或最小值
2、图中所示的二次函数图像的解析式为:y=2x2+8x+13
⑴若-3≤x≤3,该函数的最大值、最小值分别为( )、( )。
⑵又若0≤x≤3,该函数的最大值、最小值分别为( )、( )。
交流:求函数的最值问题,应注意什么?
温故知新:
1、二次函数y=a x2+bx+c(a≠0)何时有最大值或最小值?
2、如何求二次函数y=ax2+bx+c(a≠0)的最值?
例1:用8 m长的铝合金型材做一个形状如图所示的矩形窗框.应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?
问题探究1:
如图,用长60米的篱笆围成一个一面靠墙的长方形的菜园,设菜园垂直于墙的一边为x米,面积为y平方米。
(1)求y与x的函数关系式及自变量的取值范围;
(2)怎样围才能使菜园的面积最大?最大面积是多少?
合作探究2:
用长为8米的铝合金制成如图窗框,一边靠2m的墙,问窗框的宽和高各为多少米时,窗户的透光面积最大?最大面积是多少?
问题探究3:
何时窗户通过的光线最多?
某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?
x