1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《22.3相似三角形的性质》教案优质课下载
教学重点:
理解相似三角形的性质定理l并能初步运用
教学难点:
相似三角形的性质定理l的证明
教学过程
一、复习回顾与思考
1、三角形有哪些主要线段?
2、到目前为止,我们已经学习了相似三角形的哪些性质?什么是相似比?
3、如下图,△ABC≌△DEF,AH、DG是对应高,请说出这两个全等三角形的有关性质。
教师重点关注:学生能否准确回忆相似三角形对应角相等,对应边成比例;能否理解两个全等三角形的对应边上的高相等。
二、类比与猜想
1、因为“全等”是“相似”的特例,请猜想:
如下图,△ABC∽△DEF,它们的相似比为k,AH、DG是对应高,请说说AH与DG的关系
2、因为“全等三角形的对应高、对应中线、对应角平分线相等”时一步猜想:相似三角形对应中线的比、对应角平分线的比也都等于相似比吗?
引导学生:从全等三角形相关性质入手,通过类比,猜想出相似三角形的对应高的比、对应中线的比、对应角平分线的比也都等于相似比。
(再进一步:如何证明你所发现的结论?)
三、探究性质的证明
定理1:相似三角形的对应高的比、对应中线的比、对应角平分线的比都等于相似比。
先引导学生证明对应高的相似性质:鼓励学生自己画图,并写出“已知、求证”,教师点拨纠正。
如上图,已知,△ABC∽△DEF,它们的相似比为k,AH、DG是对应高。
求证: EMBED Equation.3
证明思路:寻找两个三角形相似所欠缺的条件,根据已有相似三角形的性质得到。
再鼓励学生按上述方法,因类比证明对应中线、对应角平分线的相似性质。
四、应用举例:
例1:已知:△ABC∽△DEF,BC=3.6cm,EF=6cm,AH是△ABC的一条中线,且AH=2.4cm,求:△DEF的中线DG的长。