1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级上册《正切》优质课教案下载
教学重难点:
重点:理解锐角三角函数正切的意义。用正切表示倾斜程度、坡度。
难点:从现实情景中理解正切的意义。
教学方法:
引导——探索法。
教学准备:
课件。
教学流程:
(一)创设情景,引入新课
问题:生活中,我们经常听到“某个山坡比较陡”“坡度大”坡角比较大“这些话,我们怎样从数学的角度去精确描述这些山陡得程度呢?
(二)分析比较,探索新知
1、如图一、图二、图三各有两个直角三角形,直角边AC与DF表示水平面,AB与DE表示两个不同的坡面,坡面AB与DE哪个更陡?你是怎么判断的?
30
(由学生分组合作提出各种解决方法,最后师生合作解决问题)
2、如图,在锐角A的一边上任取一点B,自点 B先另一边作垂线,垂足为C,得到Rt△ABC;在任取一点 向另一边作垂线,垂足为 ,得到另一个Rt△A1B1C1.....,这样我们可以得无数个直角三角形。
(1) EMBED Equation.DSMT4 有什么关系?为什么?
(2)若∠A的大小发生了改变, EMBED Equation.DSMT4 的值是否改变呢?
(3)由上面的(1)和(2)你能得到什么结论?
EMBED Equation.3 3、如图,在Rt△ABC中,锐角A的对边与邻边的比叫做∠A的正切(tangen)
记作tan A
即 EMBED Equation.3
注意:1)tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”。但∠BAC的正切表示为:tan∠BAC,∠1的正切表示为:tan∠1
2)tanA不表示“tan”乘以“A ”