师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步沪科版九年级下册垂径定理下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

九年级下册《垂径定理》精品教案优质课下载

一、情境导入

你知道赵州桥吗?它又名“安济桥”,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有1400多年了,是隋代大业年间(公元605~618年)由著名匠师李春建造的,是我国古代人民勤劳和智慧的结晶.

它的主桥拱是圆弧形,全长50.82米,桥宽约10米,跨度37.4米,拱高7.2米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥.你知道主桥拱的圆弧所在圆的半径是多少吗?

二、合作探究

探究点一:垂径定理及应用

【类型一】 利用垂径定理求线段长

A.2 eq ﹨r(3) cm     B.3 eq ﹨r(2) cm

C.4 eq ﹨r(2) cm     D.4 eq ﹨r(3) cm

解析:∵直径AB⊥DC,CD=6cm,∴DP=3cm.连接OD,∵P是OB的中点,设OP为x,则OD为2x,在Rt△DOP中,根据勾股定理列方程32+x2=(2x)2,解得x= eq ﹨r(3) .∴OD=2 eq ﹨r(3) cm,∴AB=4 eq ﹨r(3) cm.故选D.

方法总结:我们常常连接半径,利用半径、弦、垂直于弦的直径构造出直角三角形,然后应用勾股定理解决问题.

变式训练:见《学练优》本课时练习“课堂达标训练”第2题

【类型二】 垂径定理的实际应用

解析:本题考查垂径定理的应用,∵OC⊥AB,AB=300m,∴AD=150m.设半径为R,在Rt△ADO中,根据勾股定理可列方程R2=(R-50)2+1502,解得R=250.故答案为250.

方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答.

变式训练:见《学练优》本课时练习“课堂达标训练”第7题

【类型三】 动点问题