1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
沪科2011课标版《垂径定理》优质课教案下载
一、情境导入
你知道赵州桥吗?它又名“安济桥”,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有1400多年了,是隋代大业年间(公元605~618年)由著名匠师李春建造的,是我国古代人民勤劳和智慧的结晶.
它的主桥拱是圆弧形,全长50.82米,桥宽约10米,跨度37.4米,拱高7.2米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥.你知道主桥拱的圆弧所在圆的半径是多少吗?
二、合作探究
探究点一:垂径定理及应用
【类型一】 利用垂径定理求线段长
A.2 eq ﹨r(3) cm B.3 eq ﹨r(2) cm
C.4 eq ﹨r(2) cm D.4 eq ﹨r(3) cm
解析:∵直径AB⊥DC,CD=6cm,∴DP=3cm.连接OD,∵P是OB的中点,设OP为x,则OD为2x,在Rt△DOP中,根据勾股定理列方程32+x2=(2x)2,解得x= eq ﹨r(3) .∴OD=2 eq ﹨r(3) cm,∴AB=4 eq ﹨r(3) cm.故选D.
方法总结:我们常常连接半径,利用半径、弦、垂直于弦的直径构造出直角三角形,然后应用勾股定理解决问题.
变式训练:见《学练优》本课时练习“课堂达标训练”第2题
【类型二】 垂径定理的实际应用
解析:本题考查垂径定理的应用,∵OC⊥AB,AB=300m,∴AD=150m.设半径为R,在Rt△ADO中,根据勾股定理可列方程R2=(R-50)2+1502,解得R=250.故答案为250.
方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答.
变式训练:见《学练优》本课时练习“课堂达标训练”第7题
【类型三】 动点问题