1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教2011课标版《立方根概念》新课标教案优质课下载
④分清一个数的立方根与平方根的区别;
⑤使学生理解“两个互为相反数的立方根的关系,即3-a=-3a。”
⑥渗透特殊──一般──特殊的思想方法。
二、教学重点与难点
重点:立方根的概念及求法。
难点:立方根与平方根的区别。
三、教学设计
教学过程设计意图说明问题导入
(出示电热水器图片)
问题(1):同学们在家里或者商场里都见过电热水器,像一般家庭常用的是容积50L的。如果要生产这种容积为50L的圆柱形热水器,使它的高等于底面直径的2倍,这种容器的底面直径应取多少?
(学生小组讨论,并推选代表发言,教师板演。)
解:设容积的底面直径为xdm,则
π· ·2x=50
可得,x3= ≈31.84
问题是什么数的立方会等于31.84呢?学生百思不得其解,教师可在此处设置一个台阶,再设问:要制作一种容积为27m3的正方体形状的包装箱,这种包装箱的边长应该是多少?
体会开立方与立方互为逆运算。在学生充分讨论的基础上教师给出解决问题的过程:
设这种包装箱的边长为xm,则x3=27
这就是求一个数,使它的立方等于27。
因为33=27,
所以x=3。
即这种包装箱的边长应为3m。 从学生生活实际中常常见到的热水器引入课题,让学生从实际问题情境中感受立方根的计算在生活中有着广泛的应用。空间图形都是三维的,有关空间图形的计算常常涉及开立方。
这个实际问题中的数量关系的分析对于学生来说是不成问题的,但在解决问题的过程中引入了新问题,这对学生来说是一个挑战,从而激发学生学习的兴趣。
“什么数的立方会等于31.84?”这个问题对于学生来说是难解决的,但该问题设置的目的是激发学生学习的兴趣。试一试
(1)学生回忆平方根的概念,并联系上面的问题,请学生归纳得出立方根的概念;
(2)学生联系开平方的概念,给出开立方的概念。