1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《三元一次方程组的解法2》公开课教案优质课下载
【教学重点与难点】
1.使学生会解简单的三元一次方程组.
2.通过本节学习,进一步体会“消元”的基本思想.
3. 针对方程组的特点,灵活使用代入法、加减法等重要方法.
【教学过程】
一、导入新课
前面我们学习了二元一次方程组的解法.有些问题,可以设出两个未知数,列出二元一次方程组来求解.实际上,有不少问题中含有更多的未知数.大家看下面的问题.
二、推进新课
出示引入问题
小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.
1.题目中有几个未知数,你如何去设?
2.根据题意你能找到等量关系吗?
3.根据等量关系你能列出方程组吗?
请大家分组讨论上述问题.
(教师对学生进行巡回指导)
学生成果展示:
1.设1元,2元,5元各x张,y张,z张.(共三个未知数)
2.三种纸币共12张;三种纸币共22元;1元纸币的数量是2元纸币的4倍.
3.上述三种条件都要满足,因此可得方程组
师:这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.
怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?
(学生小组交流,探索如何消元.)
可以把③分别代入①②,便消去了x,只包含y和z二元了:
解此二元一次方程组得出y、z,进而代回原方程组可求x.
教师对学生的想法给予肯定并总结解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.