师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步人教版七年级下册不等式及其解集下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、内容和内容解析

(一)内容

概念:不等式、不等式的解、不等式的解集、解不等式以及能在数轴上表示简单不等式的解集.

(二)内容解析

现实生活中存在大量的相等关系,也存在大量的不等关系.本节课从生活实际出发导入常见行程问题的不等关系,使学生充分认识到学习不等式的重要性和必然性,激发他们的求知欲望.再通过对实例的进一步深入分析与探索,引出不等式、不等式的解、不等式的解集以及解不等式几个概念.前面学过方程、方程的解、解方程的概念.通过类比教学、不等式、不等式的解、解不等式几个概念不难理解.但是对于初学者而言,不等式的解集的理解就有一定的难度.因此教材又进行数形结合,用数轴来表示不等式的解集,这样直观形象的表示不等式的解集,对理解不等式的解集有很大的帮助.

基于以上分析,可以确定本节课的教学重点是:正确理解不等式、不等式的解与解集的意义,把不等式的解集正确地表示在数轴上.

二、目标和目标解析

(一)教学目标

1.理解不等式的概念

2.理解不等式的解与解集的意义,理解它们的区别与联系

3.了解解不等式的概念

4. 用数轴来表示简单不等式的解集

(二)目标解析

1.达成目标1的标志是:能正确区别不等式、等式以及代数式.

2.达成目标2的标志是:能理解不等式的解是解集中的某一个元素,而解集是所有解组成的一个集合.

3.达成目标3的标志是:理解解不等式是求不等式解集的一个过程.

4、达成目标4的标志是:用数轴表示不等式的解集是数形结合的又一个重要体现,也是学习不等式的一种重要工具.操作时,要掌握好“两定”:一是定界点,一般在数轴上只标出原点和界点即可,边界点含于解集中用实心圆点,或者用空心圆点;二是定方向,小于向左,大于向右.

三、教学问题诊断分析

本节课实质是一节概念课,对于不等式、不等式的解以及解不等式可通过类比方程、方程的解、解方程类比教学,学生不难理解,但是对不等式的解集的理解就有一定的难度.

因此,本节课的教学难点是:理解不等式解集的意义以及在数轴上正确表示不等式的解集.

四、教学支持条件分析

利用多媒体直观演示课前引入问题,激发学生的学习兴趣.

五、教学过程设计

(一)动画演示 情景激趣

多媒体演示:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?

设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣.

(二)立足实际 引出新知

观察与思考

现实生活中,数量之间存在着相等与不相等的关系

1.例如,小明的身高为155cm,小聪的身高为156cm,则我们可以用不等号“>”或“<”来表示他们的身高之间的关系

如:156 > 155或155 < 156

2.思考 如图所示,处于平衡状态的托盘天平的右盘放上一质量为50g的砝码,左盘放上一个圆球后向左倾斜,问圆球的质量x g与质量为50g的砝码之间具有怎样关系?

我们很容易知道圆球的质量大于砝码的质量,即x > 50.

设计意图:培养学生合作、交流的意识习惯,使他们积极参与问题的讨论,并敢于发表自己的见解.老师对问题解决方法的梳理与补充,发散学生思维,培养学生分析问题、解决问题的能力.

(三)紧扣问题 概念辨析

1.不等式

设问1:什么是不等式?

设问2:能否举例说明?

由学生自学,老师可作适当补充.比如:156>155,155<156,x>50都是不等式.

2.不等式的解

设问1:什么是不等式的解?

设问2:不等式的解是唯一的吗?

由学生自学再讨论.

交流:下面给出的数中,能使不等式x>50成立吗?你还能找出其他的数吗?

20, 40, 50, 100.

老师点拨:当x=20,20<50, 不成立;

当x=40,40<50, 不成立;

当x=50,50=50, 不成立;

当x=100,100>50, 成立.

说明x任意取一个大于50的数都是不等式x>50的解.

代入法是检验某个值是否是不等式的解的简单、实用的方法.

3.不等式的解集

设问1:什么是不等式的解集?

设问2:不等式的解集与不等式的解有什么区别与联系?

由学生自学后再小组合作交流.

老师点拨:不等式的解是不等式解集中的一个元素,而不等式的解集是不等式所有解组成的一个集合.

4.解不等式

设问1:什么是解不等式?

由学生回答.

老师强调:解不等式是一个过程.

设计意图:培养学生的自学能力,进一步培养学生合作交流的意识.遵循学生的认知规律,有意识、有计划、有条理地设计一些问题,可以让学生始终处于积极的思维状态,不知不觉中接受了新知识.老师再适当点拨,加深理解.

(四)数形结合,深化认识

(五)归纳小结,反思提高

关于教学过程的更多环节详情请下载后观看

六、目标检测设计

1.填空

下列式子中属于不等式的有___________________________

① x +7>

② x ≥ y

②+ 2 = 0 ④ 5x + 7

设计意图:让学生正确区分不等式、等式与代数式,进一步巩固不等式的概念.

2.用不等式表示

① a与5的和小于7

② a的与b的3倍 的和是非负数

③ 正方形的边长为xcm,它的周长不超过160cm,求x满足的条件

设计意图:培养学生审题能力,既要正确抓住题目中的关键词,如“大于(小于)、非负数(正数或负数)、不超过(不低于)”等等,正确选择不等号,又要注意实际问题中的数量的实际意义.

3.填空

下列说法正确的有_____________

①x=5是不等式 x -2 >0 的解

②不等式 x - 2>0 的解为 x =5

③不等式 x - 2 > 0 的解集为 x =5

④不等式 x - 2 > 0 的解集为 x > 2

设计意图:进一步让学生正确理解不等式的解与解集的区别与联系,并且理解数学中的从属关系与包涵关系.

4.选择

下列不等式的解集在数轴上表示正确的是:( )

A. x>-3

B. x≥2

C. x≤5

D. 0≤x≤10

设计意图:进一步培养学生数形结合能力,理解空心圆圈与实心圆点的意义,并且能正确确定方向.

教材