1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《一元一次不等式组》最新教案优质课下载
设问(2):设抽完污水所用的时间还是范围?
小组讨论,交流意见,再独立设未知数,列出所用的不等关系.
教师追问(1):类比方程组的概念,说出什么是一元一次不等式组?怎样表示?
学生自学概念,说出表示方法.
教师追问(2):类比方程组的解怎样确定不等式组中x的取值范围?
学生经过小组讨论,老师点拨:不等式组中各个不等式解集的公共部分就是不等式组x的取值范围.
教师追问(3):怎样解不等式,并用数轴表示解集?
学生独立完成.
教师追问(4):通过数轴,怎样得出不等式组的解集?
学生独立完成,老师点评
其中x同时满足以上两个不等式.
在议论的基础上,老师揭示:
一个量需要同时满足几个不等式的例子,在现实生活中还有很多.用学生身边有趣的实例引入,一方面引起学生的参与欲,
一方面也是知识拓展的需要.设计此情境的意图在于:1、复习用一元一次不等式解应用题;2、感受同一个x可以有不同的不等式;3、x应该同时符合两个不等式的要求,为引出解集做铺垫.类比探索引出新知
类似于方程组,引出一元一次不等式组的概念和记法.(教科书127页)
类比方程组的解,引出一元一次不等式组的解集的概念.(教科书128页)
利用数轴,师生一起将问题 的解集求出来.
渗透类比思想。初步感受求解集的方法。解法探讨出示教科书例1,解下列不等式组:
(1) EMBED Equation.3 (2) EMBED Equation.3
小组讨论:
根据不等式组的解集的意义,你觉得解决例1需要哪些步骤?在这些步骤中,哪个是我们原有的知识,哪个是我们今天获得的新方法?
在讨论的基础上,师生一起归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)找出各个不等式的解集的公共部分(利用数轴).
师生一起完成例1. 对于例1,解不等式并非新内容.解题步骤的归纳和各解集
公共部分的求取,才是新知识,却是学生自己可以领会的.通过此处的讨论探索,对于多于两个不等式组成的不等式组的解集的求取,期望学生能实现无师自通.先自主探究解题步骤,后具体解题,可以居高临下地看待一元一次不等式组的解法.巩固练习学生练习:教科书第129页练习1
教师巡视、指导,师生共同评讲进一步熟悉解题步骤,熟练地利用数轴正确地查找公共部分。教师及时调控。