1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《13.4课题学习最短路径问题》公开课教案优质课下载
难点如何利用轴对称将最短路径问题转化为线段和最小问题。突破
方法利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决。教具电子白板、PPT教法
学法引导学生参与解题的讨论与交流教
学
设
计一、创设情景 引入课题
师:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.
(板书)课题
学生思考教师展示问题,并观察图片,获得感性认识.
二、自主探究 合作交流
问题:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:
从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
追问1:观察思考,抽象为数学问题
这是一个实际问题,你打算首先做什么?
将A,B 两地抽象为两个点,将河l 抽象为一条直线.
追问2 你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?
师生活动:学生尝试回答, 并互相补充,最后达成共识:
(1)从A 地出发,到河边l 饮马,然后到B 地;
(2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;
(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图).
强调:将最短路径问题抽象为“线段和最小问题”
问题1 : 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
追问1 对于问题2,如何将点B“移”到l 的另一侧B′处,满足直线l 上的任意一点C,都保持CB 与CB′的长度相等?
问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小?
追问2 你能利用轴对称的有关知识,找到上问中符合条件的点B'吗?