师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步人教版八年级上册13.4 课题学习 最短路径问题下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教2011课标版《13.4课题学习最短路径问题》新课标教案优质课下载

能力训练要求

在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

情感与价值观要求

通过有趣的问题提高学习数学的兴趣.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有所用的数学.

教学重难点

重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.

难点:如何利用轴对称将最短路径问题转化为线段和最小问题.

突破难点的方法:利用轴对称性质,作任意已知点的对称点,连接对称点和已知点,得到一条线段,利用两点之间线段最短来解决.

【教学过程】

一、创设情景 引入课题

师:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.

(板书)课题

学生思考教师展示问题,并观察图片,获得感性认识.

二、出示教学目标

1感受生活中的最短路径问题

2轴对称与最短路径的密切联系

3轴对称的性质及两点之间线段最短的理解

三、自主探究 合作交流 建构新知

思考1

如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?

两点之间,线段最短

思考2

已知:在L上求一点P,使得PA+PB最小。

引入新知

前面我们研究过一些关于“两点的所有连线中,线

相关资源

教材