师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步人教版八年级上册数学活动下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《数学活动》集体备课教案优质课下载

重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题

难点:如何利用轴对称将最短路径问题转化为线段和最小问题

【学习过程】

复习回顾:

1、如图所示:从A地到B地有三条路可供选择,你会选择哪条路距离最短?

你的理由是什么?

2、如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?

二、探索新知:

问题1:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:

从图中的A地出发,到一条笔直的河边l 饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?

精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马问题”.

你能将这个问题抽象为数学问题吗?

追问1 这是一个实际问题,你打算首先做什么?

追问2 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?

问题2:如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC与CB的和最小?

追问3:对于问题2,如何将点B“移”到l的另一侧B′处,满足直线l 上的任意一点C,都保持CB 与CB′的长度相等?你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?你能用所学的知识证明你的作法正确吗?

答:(1)从A 地出发,到河边 l 饮马,然 后到B 地; (2)在河边饮马的地点有无穷多处,把这些地点与A,B 连接起来的两条线段的长度之和,就是从A 地到饮马地,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时,AC 与CB 的和最小(如图).问题2:如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC与CB的和最小?

追问1:对于问题2,如何将点B“移”到l的另一侧B′处,满足直线l 上的任意一点C,都保持CB 与CB′的长度相等?

追问2:你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?

展示点评:作法:

(1)作点B 关于直线l 的对称点B′;

(2)连接AB′,与直线l 交于点C.

教材