师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步人教版八年级上册14.3.1提取公因式法下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教2011课标版《14.3.1提取公因式法》最新教案优质课下载

二、教学重难点

教学重点:会用提公因式法分解因式.

教学难点:如何确定公因式及提出公因式后的另外因式.

三、教学过程

(一)创设情境,引出问题

学校为了丰富我们的课外活动,打算在原操场两侧分别建一个网球场和篮球场,各场地长、宽如下图所示:

问题1:你能用几种方法表示扩大后的操场面积?

预设1:ma+mb+mc.

预设2:m(a+b+c).

问题2:不同的表示方法之间有什么关系?

预设:ma+mb+mc= m(a+b+c).

我们把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.

问题3:如何从数学的角度认识不同的表示方法之间的关系?

预设:因式分解与整式乘法是方向相反的变形.

【设计意图】通过具体问题的解决,让学生在思考、观察和探索的过程中,了解因式分解的概念,认识因式分解的基本属性——将和差化积的式子变形,同时发现因式分解与整式乘法的互逆变形关系,为后续探索因式分解的具体方法做铺垫.

练习1:根据你对概念的理解,判断下列变形是不是因式分解.

(1)2m>(m-n)=<2m2>-2mn;

(2)x2-2x+1=x(x-2)+1;

(3)a2-b2=(a+b)(a-b);

(4)4x2-4x+1=(2x-1)2;

(5)3a>2+<6a>=<3a>(a+2);

(6)m2-1+ n2=(m+1)(n-1).

【设计意图】通过实例辨析,让学生进一步理解因式分解的概念,认识到因式分解是恒等变形.

(二)探索发现,推陈出新

相关资源

教材