师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步人教版八年级上册章前引言及全等三角形下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

一、学习者特征分析

(1)起点能力水平:此阶段的学生已知道三角形的一些概念和基本性质,如边,角,顶点,角平分线,中线,高等,同时也认识一些基础图形:线、圆、正方形、长方形等。

(2)认知结构特点:大部分学生对以前所学内容掌握的比较扎实,只有少部分学生学习能力较差,跟不上教学进度。

(3)学习动机及态度:此阶段学生好奇心强,尤其在成绩较好、能力强的人身上体现更加明显,但此时期的学生叛逆心理增强,会有不少学生不再以长者的赞许为学习动力。

二、教材分析

本节课是新人教版义务教育课程标准实验教材数学八年级上册第十一章第一课时的内容,本章围绕全等三角形,主要学习全等三角形的有关概念和性质,三角形全等的条件以及角平分线的性质,学生在七年级教材中学过了线段、角、相交线等与三角形有关的知识和一些简单的说理内容,这为全等三角形的学习奠定了基础,并且在今后学习等腰三角形、直角三角形、线段的垂直平分线、角平分线等内容中都要通过证明两个三角形全等来加以解决。

三、教学设计理念

在教学过程中,有意创设诱人的知识情景,增加学生的好奇心、求知欲,产生自觉学习的内在动机,不断提高学生的智慧,发挥其潜力,促进学生的智能发展。

四、教学目标

1.知识与技能目标

(1)了解全等形和全等三角形的概念,掌握全等三角形的性质。

(2)能用符号正确表示两个三角形全等,能找出全等三角形的对应元素。

2. 过程与方法目标

在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉,通过全等三角形有关概念的学习,提高学生数学概念的辨析能力,通过找出全等三角形的对应元素,培养学生的识图能力。

3.态度价值观目标

通过感受全等三角形的对应美激发学生热爱科学勇于探索的精神,通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧,培养学生科学的学习态度及自信,互相尊重的健全人格。

五、教学重点和难点

重点:全等三角形的概念和性质.

难点:找出全等三角形的对应边、对应角.

六、教学内容

本节课提出了全等形、全等三角形、全等三角形的对应顶点、对应边、对应角等概念以及利用全等三角形的概念得到全等三角形的性质,是一节基础课,是以以前学过的三角形知识为基础,根据全等三角形的性质得到对应边相等、对应角相等是今后证明线段和角相等的基本方法。

七、教学方法和手段

以互动中探究,比较中认知,组织教学,激发学生求知欲。

八、教学过程

一.提出问题,创设情境

1、展示生活图片(全等图形),提出问题:①指出图案中形状与大小相同的图形。②你还能再举出生活中的一些实例吗?

【活动】将展示的两个图形(全等三角形)重叠在一起,要求学生观察同时引入全等形、全等三角形的概念。要求学生动手剪一剪

2.学生自己动手(每小组四名同学自主探讨)

剪出一个三角形,找两个学生到黑板上演示将三角形平移、翻折、旋转后的图形画出来。并观察与原三角形有何联系(引导学生观察图形,得出结论)

3.获取概念

(1)引导学生学习相关概念:

①如何用全等的符号为“≌”表示两个三角形全等。

②全等三角形对应顶点、对应边、对应角

(2)将两个三角板重合在一起,要求学生观察对应边、对应角的关系,引导学生得出全等三角形的性质。

二.导入新课

将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.

【议一议】各图中的两个三角形全等吗?

不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.

(注意强调书写时对应顶点字母写在对应的位置上)

启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.

关于教学过程的更多环节详情请下载后观看

九、课时小结

通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.

找对应元素的常用方法:

1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.

2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.

3.最长边对最长边,最短边对最短边;最大角对应最大角,最小角对应最小角。

十、作业

课本习题12.1第1、2、3题

课后作业:《课时作业》配套练习

相关资源

教材