1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《“边边边”判定三角形全等》优质课教案下载
(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).
这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.
问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望.
对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生的个性思维.建立模型,探索发现探究一:先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C',满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?
1.只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?
结果展示:
只给定一条边时:
只给定一个角时:
2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.
①三角形一内角为30°,一条边为3cm.
②三角形两内角分别为30°和50°.
③三角形两条边分别为4cm、6cm.
学生分组讨论、探索、归纳,给出的两个条件可能是:一边一内角、两内角、两边.
结果展示:
可以发现按这些条件画出的三角形都不能保证一定全等.
探究二:给出三个条件画三角形,你能说出有几种可能的情况吗?
归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.
在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.
先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?
让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:
三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”).
学生动手操作,通过实践、自主探索、交流,获得新知,同时也渗透了分类的思想.
学生模仿上面的研究方法,在教师的引导下完成操作过程,通过交流,归纳得出结论,同时也明确判定三角形全等需要三个条件.应用新知,体验成功实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.
鼓励学生举出生活中的实例.
例l,如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,