师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步人教版八年级下册习题训练下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教2011课标版《习题训练》集体备课教案优质课下载

3.通过具体的例子,了解逆命题、逆定理的概念,知道原命题成立其逆命题不一定成立.

【过程与方法】

通过整理与复习直角三角形的有关知识,形成直角三角形的性质与判定方法的知识体系.

【情感态度与价值观】 

能灵活运用分类讨论思想和数形结合思想,提高运用勾股定理及其逆定理解决问题的能力.

二、教学重难点

  【重点】 运用勾股定理及其逆定理解决问题.

  【难点】 会运用勾股定理的逆定理判定直角三角形.

三、教学过程

专题一 用勾股定理计算线段的长

【专题分析】用勾股定理计算线段的长这类问题,可以以选择题、填空题或解答题的形式出现,单独考查这一个知识点的情况较少,一般与其他知识点综合考查.

  1、 (2014·淮安中考)如图(1)所示,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为  (  )

 〔解析〕 如图(2)所示,在Rt△ABC中,AC=4,BC=3,由勾股定理得AB===5.故选A.

  [方法归纳] 在解决此类问题时,应善于挖掘图中的隐含条件,即将所求的边放进直角三角形中,并根据图示,求出直角三角形的两边长,最后就容易根据勾股定理来求第三边了.同时在用勾股定理运算时注意常用的勾股数,如:3,4,5;6,8,10;9,12,15;8,15,17;7,24,25;9,40,41等等.

专题二 应用勾股定理建立方程

  【专题分析】应用勾股定理建立方程多见于解决折叠类问题,大多以填空题或选择题的形式出现,有时也以解答题的形式出现,单独出现时分值在3分左右.

2、 小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?

【针对训练】折叠矩形ABCD的一边AD,点D落在BC边上的点F处,已知AB=8CM,BC=10CM,求 CF 和 EC的长。

  [方法归纳] 折叠类问题中一定存在相等的线段或角,要充分挖掘折叠中隐含的数量关系.利用勾股定理建立方程也是一种常用的方法.

专题三 用勾股定理计算最短路径

【专题分析】此类题目常以选择题或填空题的形式出现,几何体多以正方体、长方体、圆柱体出现,题目的分值一般在3分左右。

3、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( π 取3)是( )

A.20cm B.10cm C.14cm D.无法确定

 【变形练习】 如图所示,圆柱形玻璃杯高为12 cm,底面周长为18 cm,在杯内离杯底4 cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4 cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为    cm.?

 〔解析〕 将圆柱侧面展开,将A,C两点放在同一平面内,然后利用勾股定理进行计算.如图所示,将圆柱侧面展开(沿点A竖直剖开)后,侧面是一个长18 cm,宽12 cm的长方形,作A关于MN的对称点B,连接BC交MN于点P,过点C作AB的垂线交剖开线MA于点D.由对称性和三角形的三边关系知AP+PC为蚂蚁到达蜂蜜的最短距离,且AP=BP.由已知和长方形的性质,得DC=9,BD=12.在Rt△BCD中,由勾股定理得BC===15,∴AP+PC=BP+PC=BC=15,即蚂蚁到达蜂蜜的最短距离为15 cm.故填15.

教材