师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步人教版八年级下册习题训练下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《习题训练》精品教案优质课下载

 能灵活运用分类讨论思想和数形结合思想,提高运用勾股定理及其逆定理解决问题的能力.

 【重点】 运用勾股定理及其逆定理解决问题.

 【难点】 会运用勾股定理的逆定理判定直角三角形.

专题一 用勾股定理计算线段的长

 【专题分析】

 用勾股定理计算线段的长这类问题,可以以选择题、填空题或解答题的形式出现,单独考查这一个知识点的情况较少,一般与其他知识点综合考查.

   (2014·淮安中考)如图(1)所示,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,则线段AB的长度为  (  )

 A.5    B.6    C.7    D.25

 〔解析〕 如图(2)所示,在Rt△ABC中,AC=4,BC=3,由勾股定理得AB===5.故选A.

 [方法归纳] 在解决此类问题时,应善于挖掘图中的隐含条件,即将所求的边放进直角三角形中,并根据图示,求出直角三角形的两边长,最后就容易根据勾股定理来求第三边了.同时在用勾股定理运算时注意常用的勾股数,如:3,4,5;6,8,10;9,12,15;8,15,17;7,24,25;9,40,41等等.

 【针对训练1】 如图(1)所示,在平面直角坐标系中,长方形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为    .?

 〔解析〕 由题意,当△ODP是腰长为5的等腰三角形时,有三种情况:(1)如图(2)所示,PD=OD=5,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得DE===3,∴OE=OD-DE=5-3=2,此时点P坐标为(2,4).(2)如图(3)所示,OP=OD=5.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得OE===3,此时点P坐标为(3,4).(3)如图(4)所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得DE===3,∴OE=OD+DE=5+3=8,此时点P坐标为(8,4).综上所述,点P的坐标为(2,4)或(3,4)或(8,4).故填(2,4)或(3,4)或(8,4).

 [易错提示] 如果一个三角形是等腰三角形,在已知条件中没有说明哪条边为腰时,要注意分类讨论思想在几何图形中的应用,符合题意的等腰三角形有三种情形,注意不要遗漏.

专题二 应用勾股定理建立方程

 【专题分析】

 应用勾股定理建立方程多见于解决折叠类问题,大多以填空题或选择题的形式出现,有时也以解答题的形式出现,单独出现时分值在3分左右.

   (2014·安徽中考)如图所示,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为  (  )

 A.  B.  C.4  D.5

 〔解析〕 设BN=x,由折叠的性质可得DN=AN=9-x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选C.

 [方法归纳] 折叠类问题中一定存在相等的线段或角,要充分挖掘折叠中隐含的数量关系.利用勾股定理建立方程也是一种常用的方法.

 【针对训练2】 (2014·青岛中考)如图所示,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C'处,若AB=6,BC=9,则BF的长为  (  )

 A.4  B.3

 C.4.5  D.5

 〔解析〕 ∵折叠前后两个图形的对应线段相等,∴CF=C'F,设BF=x.∵BC=9,∴CF=9-x,∴C'F=9-x,又BC'=3,在Rt△C'BF中,根据勾股定理可得C'F2=BF2+C'B2,即(9-x)2=x2+32,解得x=4,因此BF的长是4.故选A.

专题三 实际问题中应用勾股定理

教材