1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
1.内容
在串一串、画一画、动一动、结一结系列数学活动中进一步构建四边形、平行四边形、矩形、菱形、正方形的关系.
2.内容解析
本课时是人教版数学八年级下册第18章《平行四边形》复习第1课时.
平行四边形、矩形、菱形和正方形的原型广泛存在于现实生活中.从平行四边形到矩形、菱形,再到正方形,是通过角或边的特殊化得到的,在从一般到特殊到过程中,演变出它们的共性和独特个性.三角形中位线和直角三角形斜边上中线性质的探究,体现了三角形与四边形的相互转化思想.
一方面,把本章知识和思想方法整理成具有良好结构的系统,从整体上把握知识体系,深化对相关知识和数学思想方法的理解,这是复习课的主要目的;另一方面,通过串一串、画一画、动一动、结一结系列数学活动,落实画图推理技能,提高选择适当的知识进行解决问题的能力,这也是复习课主要目的之一.
综上所述,本节课的重点是:通过串一串、画一画、动一动、结一结系列数学活动中,落实画图推理技能,从整体上构建四边形、平行四边形、矩形、菱形、正方形的关系,提高选择适当的知识进行解决问题的能力.
1.目标
(1)在“串一串”环节初步构建知识体系.
(2)在“画一画”环节落实画图、推理技能,同时在小组讨论中培养交流表达能力.
(3)在“动一动”环节提升应用知识解决问题的能力.
(4)在“结一结”环节培养学生反思、分享意识.
2.目标解析
目标(1)的具体要求是: 在串知识结构同时,分享学生独特的知识思维导图,引导学生提升构建知识体系的能力.
目标(2)的具体要求是:在画平行四边形活动以及演变的对角线构造平行四边形和中点四边形中,落实画图、推理技能,进一步构建知识体系,同时在小组讨论中培养交流表达能力.
目标(3)的具体要求是:在动点问题中,感受从特殊到一般的过程,提升分析能力和应用知识解决问题的能力.
目标(4)的具体要求是:在课堂小结中,培养学生及时反思课堂所得,增强分享意识.
复习是一种特殊的学习活动,具有重复性、系统性、综合性、反思性.复习的主要目的是加强知识联系、深化知识理解、优化知识结构,体会数学思想方法,发展数学认知.复习课的核心认知活动是知识体系的重组和知识的选择性应用.
复习课不该仅仅是知识点的重复和叠加,不然学生容易乏味.依托基本图形的开放、变式设置,巧搭平台,不仅落实画图技能,亦能有机建构核心知识体系,通过实际问题的解决,不仅落实推理能力,亦延伸认知的“宽度”和“深度”.
B层学生有较好的数学基础,有能力构建属于自己的知识结构图,所以问题1可当做前置作业,在问题2画平行四边形环节,由于有工具限制以及对工具的理解,预计大部分学生会遇到点困难,所以需对工具做个引导说明,在学生独立尝试画图后,可先小组讨论,再全班分享,通过追问引发思考.问题3难度不太大,预计学生能较好完成,分析时需重点突出原四边形与新四边形的联系点,问题4中点四边形,矩形的中点四边形比较容易,因为方法多样,预计菱形的中点四边形部分同学不能很好的推理,需再强化分析外围四边形与中点四边形的联系点,逆向思考从中点四边形到原四边形有难度,可稍微几何画板动态展示,剩余问题让学生课后探究.问题5折叠动点最值问题,方法多样,,需留足时间思考,让学生分享想法,再引导析题,预计最后一小问不少学生会遇到困难,若时间不足,就留作课后作业思考,下节课再分享讲解.
综上所述,本节课的难点是:在逐层递进的开放问题以及变式问题中,提升知识的选择性应用能力.
以串一串、画一画、动一动、结一结系列数学活动为主线,PPT、几何画板、互联教学助手、解铃笔记的教师板学生板为辅,落实画图推理技能、进一步构建知识体系.
(一)串一串(构建知识体系,分享学生思维导图)
问题1 本章学习了哪些特殊的四边形?是按照什么顺序学习这些四边形的?请说说这些四边形之间的关系.
(二)画一画(巧搭情境平台,落实画图推理技能)
问题2 有谁知道PISA?(国际学生评估项目的缩写,主要对接近完成基础教育的15岁学生进行评估,测试学生们能否掌握参与社会所需要的知识与技能.)
曾经测过这么一题:请只用一把有刻度的直尺画平行四边形,并说明理由.(引导学生理解有刻度的直尺只能画直线和度量长度)
关于教学过程的更多环节详情请下载后观看
一、复习课之思考
复习是一种特殊的学习活动,具有重复性、系统性、综合性、反思性.时间紧任务重,上好复习课非常有难度,如果陷入知识点的重复和叠加,学生容易乏味,如果一味追求综合性,又会导致高不成低不就.拜读过腾义和老师等人的一篇《巧搭平台,让几何复习课上出“新滋味”》,很有感触,决定选取平行四边形的复习课来创设属于自己的“巧搭平台”.
二、定主题与主线
与片区教研员潘琳老师、教研组长刘莉娜老师共同协商敲定了此次公开课---第18章《平行四边形》单元复习1的主题为“建构章节知识体系,引导学生管理知识;立足数学活动探究,扎实几何画图及推理技能”。初步设想是:通过前置作业---创设属于自己的思维导图,设计“串一串”环节,初步实现“建构章节知识体系,引导学生管理知识”的目标,培养创造力;通过系列数学活动的探究,扎实几何画图及推理技能,立足基于大概念的主题单元教学,进一步构建完善知识体系。
怎么样的数学活动主线才能巧妙地实现主题目标呢?前阵子命题培训时,教研员林祥华老师介绍到曾今有这么一道PISA测试题:“请只用一把有刻度的直尺画平行四边形,并说明理由.”引发了我的思考,这种基于能力测量的好题很适合作为复习切入点,于是接着设计了最重要的活动环节“画一画”,旨在“巧设复习切入点与平台,落实画图推理技能”.PISA题不仅激发了学生的兴趣,也起到了很好的抛砖引玉的作用,由2种不同的作图方法衍生了两条变式主线,一是从对角线开始构造的各种特殊型,二是从中点四边形引发的各种变式,巧妙融入了《平行四边形》这个单元的核心知识,有机建构核心知识体系,落实画图推理技能的同时,也锻炼了学生知识的选择性应用能力,延伸认知的“宽度”和“深度”,验证了薛梅风老师说:“教师围绕核心问题讲透,体现数学特色;学生围绕核心问题开展活动,践行教育理念”.
动点问题一直是学生较为薄弱的环节,复习课应该对这类综合题有所突破,所以设计了第二个数学活动“动一动”环节,旨在“通过折叠动点最值问题,增强推理应用能力”.我选取了2017年天津数学中考倒数第二题作为我的改编背景,设计研磨修改,于是有了现在的呈现,通过不断的技能叠加,不仅落实矩形的判定、菱形的判定,直角三角形斜边上中线等核心知识,也在技能叠加中逐步为提升能力铺好台阶,最终实现解决动点的最值问题,锻炼提升了分析能力、选择性应用知识解决问题的能力.
教学反思为节选,更多详情请下载后观看