1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《二次根式的加减运算》优质课教案下载
2.内容解析
在二次根式性质和乘除运算运算的基础上,本课进一步学习二次根式的加减运算。二次根式的运算方法与数的运算方法本质上是一致的,实数的运算律对二次根式的运算仍然适用。
与分式的运算类似,二次根式的乘除运算比加减运算简单。乘除运算可直接利用运算法则 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 和性质 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 而加减运算则要先化简,再合并“同类项”。二次根式的加减运算的基本依据是二次根式的性质和分配律。
本节课的教学重点:应用分配率进行二次根式的加减运算。
二、目标和目标分析
1.目标
(1)探索并理解二次根式的加减的计算算理和计算步骤
(2)体会探索过程中所应用的归纳和类比方法
2.目标解析
目标(1)要求学生知道二次根式加减运算的方法:先把每一个二次根式化简二次根式,再运用分配律合并被开方数相同的二次根式。
目标(2)要求会先化简二次根式,然后判断被开方数是否相同,再进行合并,能进行具体的二次根式的加减运算,并能说出算理。
知识和技能目标:理解和掌握二次根式加减的方法.
过程和方法目标:先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.
情感、态度和价值观目标:学生温故知新,渗透类比思想,培养自主学习意识.
三、教学问题诊断分析
几个二次根式是否可以合并,往往需要先把每一个二次根式化简成最简二次根式,这与整式的合并同类项不同,会造成学生学习的困难;法则 EMBED Equation.DSMT4 可能在本内容学习中产生负迁移,出现 EMBED Equation.DSMT4 的错误。克服第一个困难,可以引导学生总结运算规律,得出“一化简,二判断,三合并”的运算步骤,并在运算中加强算理的说明;克服第二个难点,一是加强计算过程中说算理,二是用具体数值代入检验。
四、教学过程设计
1.创设情境,提出问题
问题1 现有一块长7.5 dm、宽5 dm的木板,能否采用如教科书图16.3-1所示的方式,在这块木板上截出两个面积分别是8平方分米和18平方分米的正方形木板?
师生活动:教师引导学生认真读题,分析提意。
追问1:能截出两块正方形木板的条件是什么?能用数学式子表示这个条件吗?
师生活动:引导学生分析出“长够、宽也够”的条件,并把条件表示为数学式子: EMBED Equation.DSMT4 从而,把问题转化为判断 EMBED Equation.DSMT4 是否成立,这就要计算 EMBED Equation.DSMT4 。
追问2: 你认为可以怎样计算 EMBED Equation.DSMT4 ?
师生活动:学生可能会想到直接取近似值。教师可以引导学生分析其中存在的问题(例如,两次取近似值,影响精确度),并寻求解决问题的方法,即先化简再求近似值,从而提出本节课的学习任务。
设计意图:用实际问题引入的目的是让学生体会二次根式加减运算的应用价值,自然地提出二次根式的加减问题。