师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步人教版八年级下册原(逆)命题、原(逆)定理下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《原(逆)命题、原(逆)定理》新课标教案优质课下载

难点:勾股定理的逆定理的证明。

一、自主学习

1.说出下列命题的逆命题,这些命题的逆命题成立吗?

⑴同旁内角互补,两条直线平行。

⑵如果两个实数的平方相等,那么两个实数平方相等。

⑶线段垂直平分线上的点到线段两端点的距离相等。

⑷直角三角形中30°角所对的直角边等于斜边的一半。

2.勾股定理的逆命题

__________________________________________________________

小结:(1)每一个命题都有逆命题.

(2)一个命题的逆命题是否成立与原命题是否成立没有因果关系.

(3)每个定理都有逆命题,但不一定都有逆定理.

二、交流展示

例1(P32探究)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。

归纳:勾股定理的逆定理

__________________________________________________________

例2:判断由线段a,b,c组成的三角形是不是直角三角形:(理解勾股数)

(1)a=15, b=8, c=17. (2)a=13, b=14, c=15.

运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。②分别用代数方法计算出a2+b2和c2的值。③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。

三、合作探究

例3、已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,

a=n2-1,b=2n,

c=n2+1(n>1)求证:∠C=90°。

四、达标测试

1.填空题。

教材