1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级上册(2014年3月第1版)《探究3“封面设计”》公开课教案优质课下载
2.进一步深入体会一元二次方程在实际生活中的应用,经历将实际问题转化为数学问题的过程,提高数学应用意识.
重难点关键
1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.
教学过程
一、创设情境,导入新知
在长方形钢片上冲去一个长方形,制成一个四周宽相等的长方形框。已知长方形钢片的长为30cm,宽为20cm,要使制成的长方形框的面积为400cm2,求这个长方形框的框边宽。
问题1 要设计一本书的封面,封面长 27 cm,宽 21 cm,正中央是一个矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下、左、右边衬等宽,应如何设计四周边衬的宽度?
二、动脑思考,解决问题
现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.
学生活动:
问题2.如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.
因为四周的彩色边衬所点面积是封面面积的 EMBED Equation.DSMT4 ,则中央矩形的面积是封面面积的.
所以(27-18x)(21-14x)= EMBED Equation.DSMT4 ×27×21
整理,得:16x2-48x+9=0
解方程,得:x= EMBED Equation.DSMT4 ,
x1≈2.8cm,x2≈0.2
所以:9x1=25.2cm(舍去),9x2=1.8cm,7x2=1.4cm
因此,上下边衬的宽均为1.8cm,左、右边衬的宽均为1.4cm.
思考:还有其他方法吗?
三、动脑思考,巩固训练
如图,在一幅长90cm,宽40cm的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求挂画的面积是整个面积的72%,那么金边的宽应是多少?
四.归纳小结
问题3 回顾前面几节课的学习内容,你能总结一下建立一元二次方程模型解决实际问题的基本步骤吗?需要注意哪些问题?