1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级上册(2014年3月第1版)《信息技术应用探索二次函数的性质》优质课教案下载
能 力使学生能利用描点法正确作出函数y=ax2+b的图象。过 程
和
方 法让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。
情 感
态 度
价值观师生互动,学生动手操作,体验成功的喜悦教学重点会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系教学难点正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系课 堂 教 学 程 序 设 计设计意图一、提出问题
1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。
2.二次函数y=x2+1的图象与二次函数y=x2-1的图象开口方向、对称轴和顶点坐标是否相同?
二、分析问题,解决问题
问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?
(画出函数y=x2+1和函数y=x2-1的图象,并加以比较)
问题2,你能在同一直角坐标系中,画出函数y=x2,y=x2+12与y=x2-1的图象吗?
教学要点
1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=x2的图象。
2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=x2+1的对应值表,并让学生画出函数y=x2+1的图象.
3.教师写出解题过程,同学生所画图象进行比较。
解:(1)列表:
x
…
-3
-2
-1
0
1
2