1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教2011课标版《探究2“最大利润”》精品教案优质课下载
二、学情分析:
本节是在学生学习二次函数的图象和性质的基础上,借助二次函数的图象研究二次函数的最小(大)值,并运用这个结论解决相关实际问题。学生已具备二次函数的图象和性质的基本知识,为本届学习二次函数的实际问题做好了知识准备。在本节的学习中引导学生用适当的函数分析问题和解决问题,在解决问题的过程中将数学模型的思想逐步细化,体会运用函数观点解决实际问题的作用,初步体验建立函数模型的过程和方法.
三、重点难点:
教学重点:从实际问题中抽象出二次函数关系,并运用二次函数的最小(大)值解决实际问题.
教学难点:将实际问题中的变量关系转化为函数解析式.
四、教学过程:
第二学时:
(一)教学目标:
1.会运用二次函数的知识求商品的生产与销售过程中的利润问题;
2.经理将实际问题转化为数学问题的过程,体会数学建模的作用,感受数学的应用价值;
3.通过学生之间的讨论、交流和探索,增强交流能力、合作额能力,同时激发学生对数学的学习兴趣.
(二)教学重点:
使学生掌握利用二次函数表示利润问题,并求最大利润的方法.
(三)学时难点:
理清实际问题中的数量关系,构建利润问题的数学模型.
(四)教学过程:
活动1:
1.知识回顾:
利用二次函数解决实际问题的方法:
师生活动:教师提出问题,引导学生思考.
教师追问1:在解决实际问题时,我们应先分析清楚问题中变量之间的关系,并如何表示它们呢?
师生活动:学生回答:用函数解析式来表示实际问题中变量之间的关系.
教师追问2:列出函数解析式后,还应确定什么?
师生活动:学生思考后回答:根据自变量的实际意义,确定自变量的取值范围.
教师追问3:确定了自变量的取值范围后,接下来我们应该做什么?