1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级上册(2014年3月第1版)《探究2“最大利润”》教案优质课下载
〖情感、态度与价值观〗通过实际问题与二次函数的联系,体验二次函数知识的实际应用价值,感受数学与人类生活的密切联系.
教学重、难点
重点: 探究利用二次函数的最大值(或最小值)解决实际问题的方法.
难点: 理解与应用函数图像顶点、端点与最值的关系.
教学过程:
一、新课导入:
1. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 .当x= 时,y的最 值是 .
2. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 .当x= 时,函数有最___ 值,是 .
3.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最_______ 值,是 .
二、知识讲解:
问题:用总长为 60 m 的篱笆围成矩形场地,矩形面积 S随矩形一边长 l 的变化而变化.当 l 是多少米时,场地的面积 S 最大?
分析:先写出S与l的函数关系式,再求出使S最大的l的值. 矩形场地的周长是60m,一边长为l,则另一边长为 m,场地的面积:
S=l(30-l) 即S=-l2+30l(0 可以看出,这个函数的图象是一条抛物线的一部分,这条抛物线的顶点是函数图象的最高点,也就是说,当l取顶点的横坐标时,这个函数有最大值. 即l是15m时,场地的面积S最大.(S=225㎡) 用总长为 60 m 的篱笆围成矩形场地,矩形面积 S随矩形一边长 l 的变化而变化.当 l 是多少米时,场地的面积 S 最大? 三、结论: 1.由于抛物线 y = ax 2 + bx + c 的顶点是最低(高)点,当 时,二次函数 y = ax 2 + bx + c 有最小(大) 值 2.列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围. 3.在自变量的取值范围内,求出二次函数的最大值或最小值. 四、运用新知,拓展训练 例题讲解:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大? 请同学们带着以下几个问题读题(1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?分析: 调整价格包括涨价和降价两种情况先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式.涨价x元,则每星期少卖 件,实际卖出 件, 每件利润为 元,因此,所得利润