1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教2011课标版《测试》新课标教案优质课下载
(3)二次函数与一元二次方程知识的联系,使学生能更好地将所学知识融会贯通。
二、学情分析:
九年级的学生在新课的学习中已经掌握了二次函数的定义、会作二次函数的图象并能根据图象对二次函数的性质进行简单地分析。并且经过一段时间的练习,学生的分析能力和理解能力都较学习新课时有所提高,学生的学习热情较高,有了一定的自主探究和合作学习能力。不过,学生学习能力差异较大,两级分化过于明显。
三、复习目标:
1、了解二次函数解析式的三种表示方法;
2、抛物线的开口方向、顶点坐标、对称轴以及抛物线与对称轴的交点坐标等;
3、一元二次方程与抛物线的结合与应用。
4、利用二次函数解决实际问题。
四、复习重点、难点:
重点:(1)掌握二次函数y=ax2+bx+c图像与系数符号之间的关系。
(2) 各类形式的二次函数解析式的求解方法和思路.
难点:(1)已知二次函数的解析式说出函数性质
(2)运用数形结合思想,选用恰当的数学关系式解决问题.
五、复习方法:自主探究、分组合作交流
六、复习过程:
活动一、知识梳理(学生独立练习,分小组批改)
1、二次函数解析式的三种表示方法:
(1)顶点式: (2)交点式: (3)一般式:
2、填表:
抛物线对称轴顶点坐标开口方向y=ax2
当a>0时,
开口
当a<0时,
开口 Y=ax2+kY=a(x-h)2y=a(x-h)2+kY=ax2+bx+c3、二次函数y=ax2+bx+c,当a>0时,在对称轴右侧,y随x的增大而( ),在对称轴左侧,y随x的增大而( );当a<0时,在对称轴右侧,y随x的增大而( ), 在对称轴左侧,y随x的增大而( )
4、抛物线y=ax2+bx+c,当a>0时图象有最( )点,此时函数有最( )值;当a<0时图象有最( )点,此时函数有最( )值