1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教2011课标版《复习题28》最新教案优质课下载
能 力探索圆的对称性,进而得到垂直于弦的直径所具有的性质;
能够利用垂直于弦的直径的性质解决相关实际问题.过 程
和
方 法在探索问题的过程中培养学生的动手操作能力,使学生感受圆的对称性,体会圆的一些性质,经历探索圆的对称性及相关性质的过程.
进一步体会和理解研究几何图形的各种方法;培养学生独立探索,相互合作交流的精神.情 感
态 度
价值观使学生领会数学的严谨性和探索精神,培养学生实事求是的科学态度和积极参与的主动精神.教学重点垂直于弦的直径所具有的性质以及证明.教学难点利用垂直于弦的直径的性质解决实际问题.教学准备教师多媒体课件学生“五个一”课 堂 教 学 程 序 设 计设计意图创设问题情境,激发学生兴趣,引出本节内容
活动1:用纸剪一个圆,沿着圆的任意一条直径对折,重复做几次,你发现了什么?由此你能得到什么结论?(课件:探究圆的性质)
学生活动设计:
学生动手操作,观察操作结果,可以发现沿着圆的任意一条直径对折,直径两旁的部分能够完全重合,由此可以发现:圆是轴对称图形,任何一条直径所在直线都是它的对称轴.
教师活动设计:
在学生归纳的过程中注意学生语言的准确性和简洁性.
二、问题引申,探究垂直于弦的直径的性质,培养学生的探究精神
活动2:按下面的步骤做一做:
第一步,在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合;
第二步,得到一条折痕CD;
第三步,在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中点M是两条折痕的交点,即垂足;
第四步,将纸打开,新的折痕与圆交于另一点B,如图1.
图1 图2
在上述的操作过程中,你发现了哪些相等的线段和相等的弧?为什么?(课件:探究垂径定理)
学生活动设计:如图2所示,连接OA、OB,得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是直角三角形,又OM为公共边,所以两个直角三角形全等,则AM=BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合, 与 重合.因此AM=BM, = ,同理得到 .
教师活动设计:
在学生操作、分析、归纳的基础上,引导学生归纳垂直于弦的直径的性质:
(1)垂直于弦的直径平分弦,并且平分弦所对的两条弧;
(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.