1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《13.2立方根》优质课教案下载
【过程与方法】
用类比的方法探寻出立方根的运算及表示方法,并能总结出平方根与立方根的异同.
【情感态度】
发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并能作出正确的处理.
【教学重点】
立方根的概念及求法.
【教学难点】
立方根与平方根的区别.
一、情境导入,初步认识
问题 填写,并探求交流立方值与平方值的不同.
鼓励学生踊跃发言表述各自总结的结论.
【教学说明】求立方运算时,当底数互为相反数,其立方值也互为相反数,这与平方运算不同,平方运算的底数为相反数时,平方值相等.故一个正数的平方根有两个值,但一个正数的立方根只有一个值.
引出立方根定义:若x3=a,则x为a的立方根,记为.根据上述定义,请学生口述下列问题的结果,并推广到一般规律.
【教学总结】由教师汇总得出下列结论:
1.正数的立方根是正数,负数的立方根是负数,0的立方根是0.
2..
二、思考探究,获取新知
例1 求下列各数的立方根.
分析:依据立方根的定义,先写出这四个数分别是由哪个数的立方得到的,从而求出立方根.
【教学说明】被开方数是带分数时,先将其化成假分数.
例2 求下列各式的值.
分析:先要分清符号的实际意义,如表示求-512的立方根,而-表示求512的立方根的相反数.
解:(1)-8;(2);(3)-0.2;(4)6.
【教学说明】以上两例中可总结得到:(1)任何数的立方根只有一个,而且被开方数的符号与立方根的符号相同;(2)被开方数是算式,可先算出结果.
例3 求下列各式中的x.