师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步人教五四制版八年级上册20.4 课题学习 最短路径问题下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

《20.4课题学习最短路径问题》教案优质课下载

重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。

难点:如何利用轴对称将最短路径问题转化为线段和最小问题。

学生学情分析:

1、八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学意识的思想比较薄弱,自主探究和合作学习能力也需要在课堂教学中进一步引导。此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一定的数学新知识,但在数学的说理上还不规范,集合演绎推理能力有待加强。

2、学生已经学习过 “两点之间,线段最短。”以及“垂线段最短”。以及刚刚学习的轴对称和垂直平分线的性质作为本节知识的基础。

教学策略分析:

最短路径问题从本质上说是最值问题,作为八年级学生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。

解答“当点A、B在直线l的同侧时,如何在l上找到点C,使AC与BC的和最小”,需要将其转化为“直线l异侧的两点,与直线l上的点的线段的和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难。

在证明“最短”时,需要在直线上任取一点(与所求做的点不重合),证明所连线段和大于所求作的线段和,这种思路和方法,一些学生想不到。

教学时,教师可以让学生首先思考“直线l异侧的两点,与直线l上的点的和最小”为学生搭建桥梁,在证明最短时,教师要适时点拨学生,让学生体会任意的作用。

教学过程:

环 节

教师活动

学生活动

设计意图

1.【问题】:看到图片,回忆如何用学过的数学知识解释这个问题?

(教师板书三大定理)

这样的问题,我们称为“最短路径”问题。

(教师板书课题)

1、两点之间,线段最短。