1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《26.2.1正比例函数》优质课教案下载
教学过程:
一:情境引入
下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式.
(1)圆的周长 EMBED Equation.DSMT4 随半径 r 的变化而变化;
(2)铁的密度为7.8 g/cm3,铁块的质量 m(单位:g)随它的体积 V(单位:cm3)的变化而变化;
(3)每个练习本的厚度为0.5 cm,练习本摞在一起的总厚度 h(单位:cm)随练习本的本数 n 变化而变化;
(4)冷冻一个0 ℃ 的物体,使它每分下降2 ℃,物体的温度 T(单位:℃)随冷冻时间 t(单位:min)的变化而变化.
(5)2011年开始运营的京沪高速铁路全长1 318 km.设列车的平均速度为300 km/h.列车在运行过程中,行程 y(单位:km)随运行时间 t(单位:h)变化而变化;
二:探究新知
认真观察以上几个函数解析式,说说这些函数有什么共同点.总结正比例函数的概念:一般地,形如 y=kx(k 是常数,k≠0)的函数,叫做正比例函数,其中k 叫做比例系数.
下列式子中,哪些表示y 是x 的正比例函数?
EMBED Equation.DSMT4 EMBED Equation.DSMT4 EMBED Equation.DSMT4
EMBED Equation.DSMT4 EMBED Equation.DSMT4 EMBED Equation.DSMT4
练习:
(1)正比例函数图像经过两点A(-2,4),B(3,m)则m=
(2)已知y与x的函数解析式为 EMBED Equation.DSMT4 ,则当k= 时,y是x的正比例函数.
学习正比例函数概念的基础上,我们进一步研究其图象及其性质.先复习描点法画函数图象一般步骤:列表、描点、连线.
例2 用描点法在同一直角坐标系中画出正比例函数 y =x , EMBED Equation.DSMT4 的图象.
我们知道,正比例函数的图象是一条经过坐标原点的直线,我们也知道,两点确定一条直线,现在,我们有画正比例函数图象的简便画法了吗?
,归纳总结:过原点(0,0)和点(1,k)画直线,得到y =kx 的图象.
练习:用你认为最简单的方法在上面同一直角坐标系中画出下列函数的图象
(1) EMBED Equation.DSMT4 (2) EMBED Equation.DSMT4
问题: 对一般正比例函数y =kx,
思考1 在k>0 的情况下,图象是左低右高还是左高右低?
思考2 对应地,当自变量的值增大时,对应的函数值是随着增大还是减小?