1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教五四学制2011课标版《28.1.3二次函数y=ax2的图象和性质》精品教案优质课下载
阅读教材第29至32页,自学“例1”“思考”“探究”,掌握用描点法画出函数y=ax2的图象,理解其性质.
自学反馈 学生独立完成后集体订正
①画函数图象的一般步骤:列表-描点-连线.
②在同一坐标系中画出函数y=x2、y= x2和y=2x2的图象.
解:略
根据y≥0,可得出y有最小值,此时x=0,所以以(0,0)为对称点,再对称取点.
③观察上述图象的特征:形状是抛物线,开口向上,图象关于y轴对称,其顶点坐标是(0,0),其顶点是最低点(最高点或最低点).
④找出上述三条抛物线的异同:开口向上,关于y轴对称,顶点坐标为(0,0).
可从顶点、对称轴、开口方向、开口大小去比较寻找规律.
⑤在同一坐标系中画出函数y=-x2、y=- x2和y=-2x2,并找出它们图象的异同.
解:略
归纳 一般地,抛物线y=ax2的对称轴是y轴,顶点是(0,0),当a>0时,抛物线的开口向上,顶点是抛物线的最低点,a越大,抛物线的开口越小;当a<0时,抛物线的开口向下,顶点是抛物线的最高点,a越大,抛物线的开口越大.
合作探究
活动1小组讨论
例1 填空:①函数y=(- x)2的图象是____,顶点坐标是____,对称轴是____,开口方向是____.
②函数y=x2、y= x2和y=-2x2的图象如图所示,请指出三条抛物线.
解:①抛物线,(0,0),y轴,向上;
②根据抛物线y=ax2中,a的值的作用来判断,上面最外 面的抛物线为y= x2,中间为y=x2,在x轴下方的为y=-2x 2.
解析式需化为一般式,再根据图象特征解答,避免发生错误.抛 物线y=ax2 中,当a>0时,开口向上;当a<0时,开口向下,a越大,开口越小.
例2 已知函数y=(m+2)x 是关于x的二次函数.
①求满足条件的m的值;
②m为何值时,抛物线有最低点?求这个最低点;当x为何值时,y随x的增大而增大?
③m为何值时,函数有最大值?最大值为多少?当x为何值时,y随x的增大而减小?
解:①由题意得 解得
∴当m=2或m=-3时,原函数为二次函数.