1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《14、正比例和反比例(2)》精品教案优质课下载
1.正比例和反比例的区别与联系:
相同点不同点特征关系式正比例两种相关联的量两种量中相对应的两个数的比的比值(也就是商)一定 = k(一定)反比例两种量中相对应的两个数的积一定x×y= k(一定)与老教材相比,新教材进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。
2.图上距离和实际距离的比,叫做这幅图的比例尺。
图上距离:实际距离=比例尺或=比例尺
教学目标
1.进一步认识成正比例和反比例的量,掌握两种量是否成比例、成什么比例的思考方法。
2.通过掌握判断两种相关联的量是否成正比例或反比例的方法,提高分析、判断的能力。
3.进一步体会比和比例知识的应用价值,感受不同领域的数学内容之间的密切联系。认识成正比例和反比例的量,感受正 、反比例是描述数量关系及其变化规律的又一种有效的数学模型。
教学建议
复习正比例和反比例,重点是它们的意义。教材让学生回忆判断两种量是否成正比例或反比例的方法,重温正比例关系的特征是两种相关联变量的商保持一定,反比例关系的特征是两种相关联变量的积保持一定。再通过第7、8题的判断,进一步巩固正比例和反比例的概念。第9题复习正比例的图像,其中汽车行驶的路程和耗油量是否成正比例,要利用图像找出几组相对应的数,组成比并求出比值,根据正比例的意义进行判断。
复习比例尺的知识仅编排一道题,利用平面图的比例尺和量出的图上距离,计算相应的实际距离。教学第10题要说说这幅平面图的比例尺和具体含义,从线段比例尺得出数值比例尺,回忆比例尺的意义和算法。要通过解题归纳求实际距离的方法及注意点,还要说说怎样求图上距离。
知识链接
1.正比例和反比例 (教科书六下 P62 例1、例2 、P63 例3)
2.比例尺 (教科书六下 P48 例6、 P49例7 )
教学过程
一、正比例和反比例的意义
1.教师提问:根据正比例和反比例的意义,我们怎样判断两种量是否成正比例或反比例关系?(小组讨论后,交流)
2.小结:第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定。
3.举出一些生活中成正比例或反比例量的例子,在小组里交流。
例如:黄瓜的单价一定,数量和总价成正比例。因为,第一,数量和总价这两种量是相互关联的,其中一种量总价随着另一种量数量的变化而变化。第二,这两种量中每一组对应的数的比值都是单价。单价一定,所以这两种量是成正比例的量。
二、练一练
1.下表中两种量成比例吗?为什么?
加数122.51424加数1827.5166
总吨数422610024.4余下吨数41259923.4
因数35320因数159101.5学生说一说每张表中, 第一,这两种量是不是相互关联?其中一种量是否随着另一种量的变化而变化?第二,这两种量中每一组对应的数的比值(或积)是否一定。再作出相应的判断。